
Social Influences on Secure Development Tool Adoption:
Why Security Tools Spread

Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill
North Carolina State University

890 Oval Drive, Raleigh, NC 27695
{sxiao,jwshephe}@ncsu.edu, emerson@csc.ncsu.edu

ABSTRACT
Security tools can help developers build more secure software
systems by helping developers detect or fix security vulnera-
bilities in source code. However, developers do not always
use these tools. In this paper, we investigate a number of so-
cial factors that impact developers’ adoption decisions, based
on a multidisciplinary field of research called diffusion of in-
novations. We conducted 42 one-on-one interviews with pro-
fessional software developers, and our results suggest a num-
ber of ways in which security tool adoption depends on de-
velopers’ social environments and on the channels through
which information about tools is communicated. For exam-
ple, some participants trusted developers with strong reputa-
tions on the Internet as much as they trust their colleagues for
information about security tools.

Author Keywords
adoption; security tools; social factors

ACM Classification Keywords
D.2.0 SOFTWARE ENGINEERING: Tools

General Terms
Human Factors; Security

INTRODUCTION
Software security is a non-functional requirement of software
that ensures that software functions correctly even under ma-
licious attack [18]. Many types of software vulnerabilities can
compromise security, including memory safety violations, in-
put validation errors, and race conditions. According to the
National Institute of Standards and Technology, the number
of new software vulnerabilities discovered each year has more
than doubled in the last decade; in 2012, more than 5,000 new
vulnerabilities were reported1.

1http://web.nvd.nist.gov/view/vuln/statistics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSCW’14, February 15–19, 2014, Baltimore, Maryland, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2540-0/14/02...$15.00.
http://dx.doi.org/10.1145/2531602.2531722

The cost of fixing defects in software, including vulnerabil-
ities, increases over time [4]. Vulnerabilities can be particu-
larly expensive, taking into account the costs of losing cus-
tomer trust, handling bad publicity, and, potentially, facing
litigation. For instance, a single vulnerability in Microsoft’s
Internet Information Server cost an estimated $2 billion in
repair, lost productivity, and support [7]. In comparison, pre-
vious work indicates that fixing vulnerabilities can take as
little as three minutes of a developer’s time if found early
enough [6]. However, finding these vulnerabilities in order to
fix them can require significant skill and resources.

Because the cost of changing software to fix vulnerabilities
increases over time [4], we focus on tools that help devel-
opers find and fix vulnerabilities in source code during the
implementation phase of the software development lifecycle.
We call these tools secure-software development tools, or se-
curity tools for short. We consider two types of security tools:
static analysis tools and dynamic analysis tools. Static analy-
sis tools, such as Fortify SCA2, Armorize CodeSecure3, and
FindBugs4, scan application source code for vulnerabilities.
Dynamic analysis tools, such as HP WebInspect5 and IBM
AppScan6, scan running applications for such vulnerabilities
as memory leaks and SQL injections. Such tools can augment
the security practices, if any, that a development team already
uses.

When developers do not use security tools, they may deploy
software containing vulnerabilities they could have prevented
by using these tools during implementation. We previously
explored the problem of software development tool underuse
for tools available in integrated development environments
(IDEs) [22]. However, the consequences of security tool un-
deruse — such as the release of needlessly vulnerable soft-
ware — are more severe than those of, for example, refac-
toring tool underuse. In addition, understanding the existing
culture surrounding security tool use is critical if we are to
create a culture of secure development. Thus, security tool
underuse deserves special attention. We will refer to it as the
security tool adoption problem.

2http://www.hpenterprisesecurity.com/products/hp-fortify-
software-security-center/hp-fortify-static-code-analyzer
3http://www.armorize.com/codesecure/
4http://findbugs.sourceforge.net/
5http://www.hpenterprisesecurity.com/products/hp-fortify-
software-security-center/hp-webinspect
6http://www-01.ibm.com/software/awdtools/appscan/

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1095

In this paper, we investigate the security tool adoption prob-
lem by studying the factors that influence the adoption of se-
curity tools, based on a multidisciplinary field of research
called diffusion of innovations [34]. This paper’s primary
contribution is a qualitative account of social factors influ-
encing security tool adoption. We consider software develop-
ment companies as the social systems in which security tools
are spread. Thus, many of these social factors are manifested
in and shaped by the organizational structure and policies of
these companies. We also address social factors by investi-
gating how developers communicate about security tools and
how their attitudes toward different communication channels
affect adoption. Our findings, based on an interview study
with 42 software developers, can help organizations predict
return on investment for new security tools, toolsmiths to un-
derstand the needs of their users, and educators decide how
to teach and present security tools to their students.

We feel that an account of adoption focusing on such social
factors is overdue. Previous work in software engineering has
focused on developing better tools, but such work does not ac-
count for tool adoption behavior. Previous work in human as-
pects of software engineering has described social factors on
the adoption of software process [37] and programming lan-
guages [19], but such work has not, until now, been extended
to programming tools in general or security tools in particular.
Future security tools would be better positioned to improve
the state of the practice if they were designed and presented
to developers in ways that make adoption more likely. This
foundational work will help us develop an understanding of
adoption that we hope will help increase the impact of future
research into security tool development.

RELATED WORK
In this section, we discuss existing theories of technology dif-
fusion, as well as related studies of developers’ adoption of
tools and technologies.

Adoption Theory
To make our investigation of as the security tool adoption
problem as comprehensive and principled as possible, we
used an existing theory of diffusion, or the spread of new ideas
and technologies. This theory, Rogers’ diffusion of innova-
tions (DOI) theory, is one of the most widely used diffusion
theories across disciplines. Rogers defines DOI as “the pro-
cess by which an innovation is communicated through cer-
tain channels over time among the members of a social sys-
tem” [34]. DOI explains the process by which a technol-
ogy or idea spreads through a population. It describes how
a group of people learn of a new technology, try it for them-
selves, then decide whether or not to adopt it for long-term
use. DOI also names social and technological factors that
speed or hinder this process. For instance, highly influential
early adopters and organizational mandates can increase both
the probability and speed of adoption. Technological factors,
like the complexity of a technology and its compatibility with
existing technologies, also influence adoption patterns. The
present paper focuses on social aspects as they are manifested
in software development companies.

Other theories describe what influences individuals’ inten-
tions to use information technology. These include the Tech-
nology Acceptance Model [8, 40], Perceived Characteris-
tics of Innovating [20], Theory of Planned Behavior [1], and
Model of Personal Computer Utilization [39]. Though DOI
shares many traits with these theories, DOI accounts for com-
munication in ways other theories do not. Our previous find-
ings indicate that the way developers learn about tools affects
their adoption behavior [23], and DOI’s focus on communi-
cation about new technologies allows us to study this phe-
nomenon further.

Software Technology Transfer
An area of research related to DOI is software technology
transfer (STT), in which software engineering innovations
are transferred from an idea to common practice [5]. Re-
searchers have studied STT in different contexts. Nahar and
colleagues studied transfer of software development tools and
methods from a multinational Finnish company to its Indian
subsidiary, and described how well-trained internal consul-
tants helped this process succeed [24]. Gorschek and col-
leagues developed a model of STT based on their experiences
collaborating with industry [10]. They found that training
adopters in using the technology and long-term commitment
from management, among other factors, increase the proba-
bility of successful STT. Our paper extends such results to
security tools.

Adoption of Software Engineering Technologies
We also expand other research on the adoption of some kinds
of software tools, methodologies, and programming lan-
guages. One of the most widely studied classes of tools is that
of Computer-Aided Software/Systems Engineering (CASE)
tools. For example, Premkumar and Potter surveyed devel-
opers to evaluate a model of factors that influence CASE
adoption found five important factors, such as presence of a
product champion and support from management [28]. Iivari
conducted a similar study evaluating ten factors; his results
suggest the importance of management factors, voluntariness,
and the perceived advantages of CASE tools [15]. Kemerer
demonstrated how learning curves can affect CASE adoption
and the challenges in applying traditional learning curve mod-
els to CASE tools [16]. Other studies of CASE adoption iden-
tified factors that were part of or extended factors from DOI
theory [30, 31, 14].

Researchers have also studied diffusion of software devel-
opment methodologies. For example, Raghavan and Chand
used DOI in an informal case study to investigate why the
adoption of structured design methodologies was slow [29].
They recommend that researchers produce more evidence for
the benefits of such methodologies and find ways to effec-
tively communicate these benefits. Riemenschneider and col-
leagues showed that developers’ intention to adopt is deter-
mined by the presence of an organizational mandate, the com-
patibility of the methodology, and peer influence [32]. Hard-
grave and colleagues investigated the determinants of devel-
opers’ intention to follow methodologies, showing that an or-
ganizational mandate cannot guarantee the sufficient use of

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1096

the software methodology [12]. Singer and Schneider stud-
ied how to improve the adoption rate of software engineering
methodologies using social software [36].

Recent work has also investigated the diffusion of program-
ming languages and language features. We previously em-
pirically investigated the adoption of Java generics by min-
ing the history of 40 popular open-source Java programs, and
found that adoption of generics there is typically incomplete
and championed by one or two individual developers [26]. In
their work, Meyerovich and Rabkin posed several open-ended
questions and hypotheses about the adoption of programming
languages and features [19].

One particularly relevant set of methodologies are Secure De-
velopment Lifecycles (SDLs), which prescribe practices that
integrate security into the software development process. Mc-
Graw suggests the use of tools to help build more secure soft-
ware [18], making policies relevant to our work. The Mi-
crosoft SDL suggests a list of static analysis tools to use in
the implementation phase and a list of dynamic analysis tools
to be used in the verification phase [13]. Because using secu-
rity tools is part of SDLs, the adoption of an SDL entails the
adoption of security tools, which is the main concern of the
present work. However, according to Geer’s survey, few soft-
ware development companies formally adopt SDLs [9]. The
main self-reported reasons for non-adoption are that formal
SDLs are too time consuming, developers are not aware of
the existence of SDLs, and formal SDLs require too many re-
sources. In “A Few Billion Lines of Code Later” [3], Bessey
and colleagues discuss challenges faced when trying to de-
ploy the security tool Coverity in industry. Our work em-
pirically investigates some of the social and technical issues
described anecdotally there.

Finally, though it does not specifically concern tool adoption,
Xie and colleagues’ study on the reasons developers make
security errors [41] is similar to ours methodologically and
in spirit. We also use an interview study and are concerned
with developers’ attitudes toward secure development. One
of their central findings is that many developers feel that se-
curity is not their responsibility. While Xie and colleagues’
interview study focused on developers’ reasons for not con-
sidering security when they write software, ours also focuses
on tools and developers’ reasons for using or not using secu-
rity tools.

METHODOLOGY
We conducted one-on-one interviews with 42 software pro-
fessionals to collect data with which to study the security tool
adoption problem. More specifically, our research objective
was to qualitatively describe the factors that influence adop-
tion or rejection decisions, as well as to describe how those
factors interact. In this section, we describe how we recruited
participants, some characteristics of the participants we inter-
viewed, how we conducted the interviews, and the how we
analyzed the data we collected.

Recruitment and Incentives
We sought to interview professional software developers from
diverse backgrounds. We planned to recruit approximately

the same numbers of developers working in large, medium-
sized, and small companies. To that end, we recruited study
participants in four ways: we emailed invitations to 50 soft-
ware development companies listed on Guru7, a recruitment
website that connects freelance software developers with
those who want to hire them. We also emailed personal and
professional contacts working in software development. We
posted flyers in break rooms at a large software development
company. Finally, we asked developers who had already par-
ticipated in our study to help recruit friends and colleagues
who might be interested in participating. We incentivized
participation by offering $50 gift cards for completing the in-
terview.

When developers expressed interest in participating, we
asked them to sign a consent form and complete a screening
survey online. We used the results of this survey to select de-
velopers who were at least 18 years old, held a job related to
software development, and actively wrote code as part of their
professional activities in the past six months. We emailed de-
velopers who reported meeting these criteria to schedule the
interview.

Participants
Forty-four developers signed the consent form and completed
the screening survey. However, we later learned that one of
these people did not meet our selection criteria; another could
not complete the interview due to significant communication
difficulties. We excluded these interviews from our analysis.
Participants worked in various countries and developed soft-
ware in many application areas, including banking, military,
financial, and clinical software, as well as web browsers, and
software as a service. They used popular programming lan-
guages such as Java, JavaScript, C, C++, C#, Python, Ruby,
and Perl. Their work experience ranged from 1 to 28 years,
with a mean of 11.0 years and a median of 7.3 years.

We sought to interview developers who program as part of
their jobs, but also those who may be involved in the tool
adoption decision-making processes: managers, security ex-
perts, and software consultants. Table 1 shows the num-
bers of participants who reported working in each develop-
ment role. Table 1 also shows how many developers worked
in small, medium-sized, or large companies. We classified
companies thus: small companies employ 50 or fewer devel-
opers, medium-sized companies employ more than fifty but
fewer than 500 developers, and large companies employ 500
or more developers. As shown, we interviewed 31 program-
mers, 5 software development managers, 4 software security
experts (some of whom developed security tools themselves),
and 2 software development consultants. The majority of
our participants are programmers, because we were interested
in programmers’ experience, or lack thereof, with security
tools. We also asked managers, security experts, and con-
sultants questions about their activities outside programming
if time allowed after asking the more general tool adoption
questions. Specifically, we asked managers what factors they
considered in deciding whether to adopt a security tool for
their team; we asked security experts what factors contributed
7http://www.guru.com/

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1097

to the adoption of a security tool, how best to advertise secu-
rity tools, and how to increase awareness of the importance
of secure coding practices among ordinary programmers; and
we asked consultants questions about differences between do-
mains with respect to secure coding.

Interview Methodology
We interviewed each participant for 45 minutes to an hour
over Skype or phone. The interviewer used a script to guide
the interview8; this script contained open-ended questions
about participants’ security tool adoption choices, and more
directed questions about the importance of social and techno-
logical factors from DOI theory.

As in other exploratory studies [41], we used a semi-
structured interview methodology [35]: if the interviewer
found a participant’s answer particularly interesting, she
asked questions not in the script to collect more detailed data.
If one of these impromptu questions yielded useful informa-
tion, we added it to the script for the next interview. If a
question stopped yielding new information, we stopped ask-
ing participants that question. Thus, we did not ask every
participant every question.

Because the interview was retrospective in nature, partici-
pants might have forgotten about tools that they no longer
use. To mitigate the risk of formerly-used tools being un-
reported, we tried to prompt responses about such tools by
giving examples of security tools they may have used and se-
curity problems they may have solved in the past. This gave
participants an opportunity to recall security tools that they
had forgotten about or not have previously thought of as se-
curity tools.

Before we started each interview, we confirmed with each
participant that we could record his or her voice. After the
participant consented, we explained the purpose of our study
and our definition of security tools. At the end of the inter-
view, we thanked the participant and arranged for delivery of
the gift card offered as incentive.

Data Analysis
We recorded each interview we conducted, then transcribed
each recording. We used a qualitative data analysis program
called Atlas.ti9 to analyze the interviews using open cod-
ing [35]. We started with an initial set of codes based on find-
ings in Rogers’ discussion of diffusion of innovations [34].
We created new codes when we found interesting patterns that
were previously unaccounted for. For example, our “evalua-
tion process” code, which accounts for companies and man-
agers having a formal process in place to evaluate new se-
curity tools, was not part of our initial set of possible rele-
vant factors. When evaluating whether a participant actually
adopted a tool, we considered an instance of adoption to oc-
cur when a developer used a tool on a regular basis for at least
one week.

8The interview script is available at http://www4.ncsu.edu/
˜sxiao/adoption/interview_script.pdf
9http://www.atlasti.com/

In our results sections, we will refer to each participant by an
alias of the form Pi, from P1 to P42, to allow the reader to
track individual participants. When discussing responses to
questions that we only asked a subset of participants, we will
use expressions such as “x out of y participants said A” to
indicate that of the y developers who we asked a particular
question, x answered A. Note that this work is exploratory
and qualitative, and considers a relatively small number of
participants. While we will present some statistical informa-
tion about our participants and their behavior, such informa-
tion serves only to summarize our results — the reader should
not infer any generalizations about developers’ behavior from
our data.

PARTICIPANTS’ SECURITY TOOL USE RATES
In this section, we discuss general patterns we discovered in
participants’ use of security tools. We divided the participants
into 3 categories based on their statements in our interviews:
regular users, who used security tools regularly in their daily
programming work; occasional users, who used security tools
only when they considered it necessary to search for vulnera-
bilities; and non-users, who never used security tools.

When we initially asked participants if they had used any se-
curity tools, many participants said that they had not. How-
ever, when we gave these participants examples of what we
considered security tools, some participants reported using
them. We attribute this to our deliberately liberal definition of
security tools. Some tools that participants used, like Cover-
ity, are marketed as security tools, with finding vulnerabilities
given as a primary use case. However, we also consider a tool
a security tool if it can be used to find vulnerabilities, even if
that is not its exclusive purpose. For instance, memory pro-
filers like Valgrind10 help developers find buffer overruns and
other memory errors that can, in some cases, allow an attacker
to gain control of the instruction pointer and execute arbitrary
code on a compromised machine. As another example, Find-
Bugs can analyze code for API misuse that leaves a server
open to cross-site scripting and SQL injection attacks. Thus,
we considered the participants who regularly used Valgrind or
FindBugs to be regular users, even though finding vulnerabil-
ities is not these tools’ primary use case. We have chosen this
broad definition because, at this exploratory stage, we would
rather overgeneralize than miss a factor we had not previously
accounted for.

The nineteen occasional users reported many reasons for not
using security tools regularly. Nine of the nineteen reported
using a tool to fix a security problem, then discontinuing use
of the tool after fixing it. For example, P33 once used a mem-
ory profiler to find memory leaks in his code, then stopped
using it once he had repaired the leaks. Seven of the nine-
teen said that they stopped using a security tool because they
moved to a development team in a different application area
in which they felt security tools were not needed. Two of the
nineteen reported that they stopped using a security tool out
of “laziness”, and the other three said they were not sure why
they discontinued use of a tool.

10http://valgrind.org/

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1098

http://www4.ncsu.edu/~sxiao/adoption/interview_script.pdf
http://www4.ncsu.edu/~sxiao/adoption/interview_script.pdf

Company Size Programmer Manager Security Expert Consultant Total
Large (500+ Developers) 14 3 3 2 22

Medium (51-499 Developers) 8 1 0 0 9
Small (1-50 Developers) 9 1 1 0 11

Total 31 5 4 2 42
Table 1. Participants’ Backgrounds

Among the ten non-users, six participants worked at small
companies and reported that these companies did not re-
quire that they use secure coding practices. Participants who
worked for these small companies appeared to know less
about secure development and secure coding than other par-
ticipants. Some thought of security as a narrow concern
mainly focused on operational security, software access con-
trol, and user authentication.

In general, most of the regular users came from large compa-
nies where security tools have been integrated into the stan-
dard development process, while many of the non-users came
from small companies that do not require developers to use
secure coding practices.

ORGANIZATIONAL FACTORS
One of the strengths of DOI theory is that it accounts for how
characteristics of the social systems in which innovations dif-
fuse affect their adoption. Since all our participants were soft-
ware developers working in industry, we consider the compa-
nies in which they work as the main social systems in which
they use and learn about security tools. The social norms
and standards of these companies manifest themselves as the
company’s policies, structure, culture, and practices. In this
section, we will discuss the impact these social environments
have had on participants’ adoption decisions concerning se-
curity tools. Specifically, developers work in different com-
panies with different cultures, practices, standards, and struc-
tures that could influence adoption in many ways. Our results
show that these characteristics of the company for which a de-
veloper works can greatly influence her decisions in adopting
security tools.

Policies and Standards
A company’s policies and standards refers specifically to the
policies or standards a company holds that relate to secure
coding and the use of security tools. Several participants re-
ported that the standards of their company directly influence
the perceived necessity of security tools and their actual use
of security tools.

Only two participants reported that their companies have for-
mal secure development lifecycles that require them to use
security tools. Fewer than half of the participants reported
that their companies have and enforce formal secure coding
standards at all. Of the thirteen regular users, seven reported
that their companies require them to use some specific secu-
rity tools as part of the development process, while none of
the nineteen occasional users and ten non-users reported their
companies have these policies or standards. In other words,
all participants who were required to use security tools used
them; this is notable, as other research shows that people will
circumvent security policies if they are inconvenient, even in

hospitals, where the consequences of circumvention can be
harmful to patients [17]. However, this conforms to Straus
and colleagues’ finding [38] that mandates effectively encour-
age adoption of new technologies in organizations.

In most cases, however, security standards are informal, ver-
bal “best practices”. Participants reported following these
practices and expecting their coworkers to follow them,
though no policies or guidelines were written or enforced by
their employers. P11 said that the standards in his depart-
ment were “informal” and not “well-promoted”. P21 said
that there was no formal requirement that passwords be stored
encrypted, but that doing so was an “unwritten standard”.
These decisions might be enforced by informal communica-
tion between colleagues, such as pointing out vulnerabilities
on mailing lists.

Two participants reported that in their companies, using a tool
that is new to the company requires written authorization; ob-
taining this authorization sometimes takes weeks. Thus, these
participants rarely, if ever, investigated new tools on their own
to avoid this long wait. For example, P36 reported that at his
company, if he wanted to start using a new security tool, he
would “have to get approval from [his] manager” or through
a more complex process, “depending on the tool”. Tools to be
“only [used] internally”, that were not involved in any client-
facing services, might be approved or rejected by manage-
ment in “in a week or... a couple of weeks”, which P36 con-
sidered a “very short time”. Tools used in customer-facing
services and products would “take a lot longer” to approve.
P19 said that at his company, tools were evaluated to ensure
that the were cost-effective and fit into the organization’s ex-
isting workflow.

The managers we spoke to shed some light on this evalua-
tion process. For instance, P5 and P7 indicated they eval-
uated tools based on their cost. Both considered developer
time part of that cost. P5 who, he managed development of a
system with components written in many languages, said that
the initial cost in time to set up security tools for these var-
ied components was disproportionate to the benefits it could
have. P7 said he prefers tools that “can be scripted to run
automatically”.

Among the thirteen regular users, seven worked in large com-
panies where security tools were integrated into the develop-
ment process. Three of these seven were required to use a se-
curity tool on their local workstation. The other four reported
that security tools were integrated into their companies’ build
server; the security tools automatically check for vulnerabil-
ities as part of a nightly build or before participants check in
their changes. These participants were able to circumvent the
costs of installing, configuring, learning, and running these

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1099

security tools — they needed only to read and understand the
reports generated by the tools.

Four participants reported feeling they did not need to use se-
curity tools because they felt mandatory manual code reviews
already ensured security. Two participants mentioned they
had used security tools in conjunction with manual code re-
view; this practice gave them more confidence in their code’s
security. Overall, seven of the thirteen non-users reported
feeling no need to use security tools because they could de-
pend on code reviews or testing by others in the company en-
sure security. P9 trusted security experts to “catch the prob-
lems” in his code. This corroborates Xie and colleagues’
finding that developers tend to place trust in process when
it comes to software security [41].

Culture
By culture, we mean the beliefs and social norms surround-
ing security and security tools in a company. Different com-
pany cultures can influence developers’ security tool use: for
example, P28 worked in a company where installing new
tools on his workstation is free and encouraged. He and his
coworkers consider such exploration “cool”.

However, other companies seem to have a culture that dis-
courages using new tools. For instance, as mentioned previ-
ously, P36 worked in a company where the approval process
for the use of a new tool might take weeks. He reported that
management would “encourage” developers to see if there
was a tool that was already approved for use in order to avoid
this process. Between this encouragement from management
and the length of the approval process, P36 said that he would
need a particularly “compelling reason” to use a tool that had
to be approved. Thus, policies that necessitated a long evalu-
ation period helped create a culture of avoiding new security
tools.

Our interviews with managers confirmed that managerial in-
volvement affected company culture around security. P5, a
manager, said it was “very clear” that security is “everybody’s
responsibility” in his company, and that is was “a culture
thing” in his company. He and other managers actively fos-
tered that culture by encouraging collaboration between secu-
rity experts and other developers and offering security classes
to developers.

Domain and Security Concerns
By a company’s domain and security concerns, we mean the
importance of security in the domain in which the company
develops software. Of thirty-four participants, twenty-six
considered their companies’ domains security-sensitive. De-
spite this high awareness of security issues, only ten partici-
pants were regular users, as mentioned previously. There is
a dissonance, then, between developers’ knowledge and be-
haviors: Sixteen participants think the security of their code
is important, but do not use tools to help increase that secu-
rity. Most developers may not have a concrete understanding
of the consequences of deploying insecure software: five par-
ticipants reported that they only started using security tools
after vulnerabilities in their companies’ code were exploited.
Three participants said they do not use security tools because

they never had been “hacked”. This is predicted by DOI the-
ory, as it is a common problem for other preventive innova-
tions [34]; we will discuss this issue further in the Discussion
section.

The perceived user base of the applications developed by
software developers had an influence on participants’ secu-
rity tool adoption decisions as well. Four participants said
they did not use security tools primarily because the applica-
tions they developed were only used internally by authenti-
cated users, so they felt they did not need to worry about the
security of these applications. Their conception of software
security mainly concerned data access control and user au-
thentication, as opposed to other kinds of security, like mem-
ory safety and input sanitization. Six participants mentioned
that they care about security because their applications have a
large number of users. For instance, P28 said that developers
“need to make sure that [their software wasn’t] opening up se-
curity holes” for the software’s 400 or 500 million users. P19
said that security was less important than other requirements
of his software because he developed “internal applications”.
Both considered user-facing applications more likely to be at-
tacked and were more concerned about security if many users
might suffer from an exploit.

Seven participants said that in their companies, functionality
is the first concern because of tight deadlines for delivering
products. Like participants in Xie and colleagues’ study [41],
they reported not having time to worry about security, as se-
curity is a non-functional requirement. P19, for instance, said
that, partly because of limited development time, his team felt
that for the software he developed, “achieving the task [was]
more important than having a fully secure solution”.

Structure
A company’s structure, with respect to security tool adop-
tion, refers to whether the company has dedicated security
and testing teams. Of 31 participants, 17 reported that the
companies they work in have dedicated security teams. Se-
curity teams perform different functions in different compa-
nies. P13 reported that the security team at his company held
regular meetings with developers to suggest the use of new
tools. In P6’s company, developers could request security au-
dits from the security teams. These security teams would use
security tools to find vulnerabilities.

Security teams design security guidelines, offer security train-
ings and look for security tools for ordinary programmers to
use. However, only six of the security teams interacted often
with ordinary developers to consult and to review developers’
code. The other security teams, which did not often interact
with developers, tended to focus on operational security —
they prioritized access control and authentication concerns,
penetration testing, and auditing open-source software used
in the company but developed outside it. For instance, P25
reported that the security team at his company would scan his
software for vulnerabilities just before a release, not through
the entire development lifecycle.

P32’s statements illustrate the attitude of one developer who
rarely interacts with his company’s security team. He re-

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1100

ported that the security team was “less than helpful” and
“never checked any code” that he or his coworkers wrote.
Rather, they looked for vulnerabilities in open-source code
used by the company’s products. P32 considered this a “waste
of time” and thought that “they should have [spent] their time
analyzing [the company’s] code base”.

While Xie and colleagues [41] found that developers hold
a relaxed attitude towards security when they have security
teams or testing teams to back them up, we found that not
all of our participants held this attitude. Only two out of
twenty-six participants thought ordinary developers were less
responsible for security than security and testing teams. The
other participants believed they had a, to quote P35, “shared
responsibility” for writing secure software. They said that
while security experts and testers helped ensure software se-
curity, writing secure code is ultimately the developers’ re-
sponsibility. Especially in cases where ordinary developers
interacted often with the security team, participants reported
that they felt social pressure from the security team by having
them audit the code and review the new features from a se-
curity perspective. This ultimately made developers feel per-
sonally responsible for their code’s security. Nov and Arazy
found that personality traits also influence peoples’ decisions
to help others in computer-supported cooperative work con-
texts when they know that they could defer responsibility to
others [25]. This notion of personal responsibility for security
is complex, and warrants further study.

Education and Training
Education and training refers to the training a company pro-
vides for general security problems and for specific security
tools. Overall, no participants reported adopting a security
tool through education and training. Though three of thirty-
two participants mentioned that they learned about some se-
curity vulnerabilities in a software engineering course, none
of the participants had had any security-specific courses in
college. Twelve of thirty-one participants said that their com-
panies provided training that touched upon security. How-
ever, only three of them have training for specific security
tools. Rather, most of the training consisted of education
on specific vulnerabilities and security best practices. Most
trainings are optional, some are held only once a year, and
some are just for newly hired developers. P6 indicated that
questions about security were part of his employer’s inter-
view process. Thus, he assumed that developers who joined
the company already understand security vulnerabilities, so
he felt security training was unnecessary in his company.

P36 explained why security tool training may be uncommon
in his company. To avoid the time costs of training all of
its developers to use security tools, his company “want[ed]
to let certain individuals be more specialized about security”
and not “[have] the whole team understand security”. This
shows another way that the presence of security teams can
negatively affect developers’ security tool adoption behavior:
while security teams can make developers feel social pressure
to code securely, as discussed previously, they also can make
developers feel that security is not their responsibility.

COMMUNICATION CHANNEL FACTORS
Rogers [34] makes a number of claims about the characteris-
tics of communication channels that make people more or less
likely to adopt the use of a tool that they hear about through
those channels. Through our interviews, we have found two
high-level characteristics of these channels that influenced
participants’ adoption behavior: the amount of exposure that
the channel gives the innovation to individuals, and the extent
to which the individuals trust that communication channel.

DOI theory accounts for three types of communication chan-
nels: mass media, interpersonal channels, and interactive
communication on the Internet. Examples of mass media
channels include webpages, television, radio, newspaper and
magazines. Interpersonal channels involve face-to-face com-
munication between two or more people, such as in peer
recommendation. Interactive communication on the Inter-
net happens on online forums and discussion websites, where
people can discuss common interests, and social networks,
such as Twitter and Facebook.

Exposure
To learn what communication channels expose developers to
security tools, we asked participants what security tools that
they had heard about and how they heard about them. Specif-
ically, we asked them to list the security tools they had used,
then asked how they first learned about each. We also asked
participants if they had ever learned of any security tools
through each of the channels listed in Table 2. We did so to
prompt them to discuss tools that they had heard of but never
used.

In Table 2, we list the channels that participants mentioned
and the number of participants who mentioned each. In
the following subsections, we indicate what participants said
about each type of channel with respect to how and how much
they exposed participants to security tools.

Interpersonal Communication
Our previous work [23] indicates that developers sometimes
learn about tools through interpersonal channels — specif-
ically, from their peers. The results of our interviews cor-
roborate this finding: participants mentioned a total of 34
instances of learning about a tool through an interpersonal
channel, 18 of which were through coworkers’ suggestions.

P37 recalled a time when he discovered a security tool when
a coworker who sat next to him shared a new tool with him
in person. However, P3 mentioned that such peer recommen-
dation happens rarely because developers do not often drop
by other developers’ offices; this corroborates our previous
findings [23].

Twenty-two of thirty participants reported that they had rec-
ommended security tools to other developers. All eight of the
other participants indicated that they did not recommend se-
curity tools to their friends because of the tools’ cost. P5, for
instance, reported that one tool his company evaluated cost
50,000 dollars per license. They felt that these tools are pro-
hibitively expensive for individual users, and that adopting a

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1101

Communication
Channel Type Channel

Participants
Mentioned Total

Interpersonal Channels

Coworker Recommendation 18

34

Required by Management 6
Conference 6

Security Team Recommendation 4
Security Tool Vendor 4

Required by Customer 2

Mass media

Technical Blogs and Websites 4

7

Security Tool’s Official Website 3
Web Advertisements –

Television –
Radio –

Newspapers and Magazines –
Interactive Communication

on the Internet
Online Forums and Discussion Boards 4 4Social Networks –

Table 2. Security Tool Discovery Channels

tool is a managerial, not individual, decision. Eighteen of an-
other thirty participants reported actually using a security tool
or tools recommended to them by peers. We were surprised
that participants reported six instances of first hearing of tools
at security conferences and trade shows; we did not expect so
many participants to learn about tools through interpersonal
channels outside their companies.

Mass Media Communication
Participants reported seven instances of discovering a tool
through mass media channels. However, no participants dis-
covered tools through traditional mass media channels like
television, magazines, or radio. They only mentioned mass
media channels that presented information to them on the In-
ternet.

Participants reported four instances of discovering a security
tool by reading a technical blog or website. Participants also
said that they sometimes searched for security tools online
when they felt the need to use them; for example, when par-
ticipants suspected their code had memory leaks, they might
search for the terms “security tools for memory leaks”. These
searches sometimes brought them to security tools’ official
websites. Participants reported three instances of learning
about a security tool through a tool’s official website discov-
ered through web search.

Though two participants recalled seeing security tools adver-
tised online, neither recalled what tool they saw advertised.
Moreover, participants reported that they had never seen secu-
rity tool advertisements through traditional mass media chan-
nels, such as television and radio. Three participants reported
they had seen security tool advertisements in software mag-
azines, but none remembered the names of the security tools
advertised. Overall, the Internet played a more important role
than traditional mass media channels in participants’ aware-
ness of security tools.

We find it interesting that only five out of thirty-four partici-
pants recalled noticing security tool advertisements in Google
search, forums, and software magazines. Participants re-
ported that they generally ignored security tool advertise-

ments because they did not trust such advertisements; we dis-
cuss the issue of trust further in the following section.

Interactive Communication on the Internet
Participants reported four times that they saw a security tool
in online forums and discussion threads in their research
about security tools. However, participants reported that they
had never learned of security tools through social networks,
which is consistent with our previous finding that developers
rarely discover tools on Twitter [23].

Trust
Trust refers to the reliance of a developer on a communica-
tion channel to deliver relevant and useful information about
security tools. We asked participants to tell us how much they
trust different communication channels, both individually and
relative to other channels.

Interpersonal Communication
Participants generally trusted “word of mouth” more than
other sources — for instance, P3 said that he would be likely
to try a tool recommended by someone he knew, more so than
one he read about. Three participants reported trusting tool
recommendations most from people with similar professional
duties. P33 indicated that he trusted tool recommendations
from technical managers, but not those from managers with-
out a technical background. This also conforms with DOI
research [34] and our previous computer supported coopera-
tive work research [23], both of which suggest that people are
more likely to trust information from individuals who share
similar socioeconomic and educational status.

Mass Media Communication
Participants reported that they do not trust advertisements in
mass media, such as those on webpages and magazines, be-
cause they considered mass media advertisements “biased”.
P37 indicated that he “did not trust [advertisements] to be
unbiased” and would rather seek information from an expert
he trusted. Only five of twenty-seven participants recalled
noticing security tool advertisements on webpages or in mag-
azines; most said they did not trust advertisements and ig-
nored them.

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1102

Two participants also mentioned that they trust security tools
and advertisements for them more if the tool is made by a
well-known company. For example, participants mentioned
they trust security tool advertisements from Microsoft and
Hewlett-Packard more than from other companies that they
had never heard of.

Interactive Communication on the Internet
We found it particularly interesting that some participants
showed nearly equal trust toward recommendations received
in person from peers and recommendations on the Internet
given by people with good reputations or demonstrated cred-
ibility. P28 claimed that he trusted people he interacted with
on the Internet, such as Stack Overflow users, more than he
trusted some people he interacted with physically, such as his
coworkers. Another participant reported that he would trust a
well-moderated, high-scoring answer to a question on Stack
Overflow over a recommendation from a colleague, particu-
larly if the answer was from a highly-ranked Stack Overflow
user. However, he also reported that he would trust a col-
league’s recommendation over a less thorough answer from a
Stack Overflow user without a high rank.

DISCUSSION
We find it remarkable that so many participants believed that
security is important and that they were personally respon-
sible for the security of the software they develop, and yet
did not use security tools. We believe that this is partly be-
cause security tools are what Rogers calls a preventive in-
novation. Preventive innovations are technologies that lower
the probability of some unwanted future event. Condoms and
vaccines, for instance, are preventive innovations. Preventive
innovations diffuse slowly because of the temporal distance
between the use of the technology and its effects, and be-
cause it’s easier to see the negative effects of not using them
than the positive effects of using them [34]. We believe that
the challenges to creating cultures around thorough testing,
as detailed by Pham and colleagues [27], may be due to the
preventive nature of writing good tests.

We consider security tools a preventive innovation because
security tools are used to lower the probability of security
problems before deploying the software, but security prob-
lems generally occur after software is deployed. We found
that a developer’s code being “hacked” works as a cue-to-
action for that developer to adopt a tool. A cue-to-action, in
DOI theory, is an event that crystallizes a favorable attitude
towards an innovation into a behavioral change [34]. In secu-
rity tool adoption, being “hacked” can push developers who
are considering using security tools to start using them. This
indicates that one way to prevent losses that occur when vul-
nerabilities are exploited and must be repaired is to find more
effective ways to warn developers about such losses.

The results of our study suggest a number of strategies for
educators, software development companies, toolsmiths, and
developers to increase adoption of security tools. These are
preliminary recommendations that we hope to expand in more
detail and to further justify in our future work.

Educators

We found some developers believe most security problems
concern user authentication and access control. We think ed-
ucators are in a unique position to present the broad spectrum
of security problems to computer science students. Educa-
tors can also introduce students to tools that help solve those
problems and encourage them to learn and explore new tools
throughout their careers. Thus, educators are in a unique po-
sition to instill their students with inquisitive and enthusiastic
attitudes toward security and security tools. Classroom stud-
ies such as Singer’s [37] demonstrate that educators can ef-
fectively teach testing in the classroom, and we hold that they
can also effectively promote other good software engineering
practices, like the use of security tools.

Software Development Organizations
Companies can design policies regarding security tools to in-
crease adoption among developers. We found, perhaps sur-
prisingly, that policies requiring developers to use security
tools seem quite effective. While secure development pro-
cesses help developers code more securely, trust in process
can make developers complacent and less likely to code se-
curely, as reflected in our findings and those of Xie and col-
leagues [41]. Our findings also suggest that if companies
structure their security processes so that security teams and
other developers often interact, developers are more likely to
feel personally responsible for security.

Companies might also encourage and support security tool
use training developers to use tools that support it; this does
not seem to be a common practice. Companies seeking to
use the best and newest security tools to find vulnerabilities
in their code might encourage developers to attend security
conferences and make it easy to start using new tools in their
organizations.

Finally, developers might be more security-conscious if their
employers emphasize the potential costs to users of exploits
on their code; developers who are conscious of these costs
may be more likely to use security tools.

Toolsmiths
We found a number of ways that toolsmiths might focus their
efforts to increase awareness of their tools. Toolsmiths might
increase adoption of their tools by focusing their efforts on
trusted channels like word-of-mouth, blogs, and Stack Over-
flow, and not using their resources promoting their tools with
advertisements.

Toolsmiths designing tools to support code review and secu-
rity auditing might also keep our results in mind. We found
that developers who interact with security teams as part of
the auditing process are more likely to adopt security tools,
so future code review tools might be designed to support so-
cial as well as technical aspects of the code review process.
Previous work has found that code review already serves so-
cial as well as code-improving purposes [2], and that code
review tools already provide social benefits, like traceability,
that other means of review do not [33]. Future code review
tools might be designed to support the social interaction of
developers and security teams.

Developers

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1103

We find it unlikely that this paper’s audience includes devel-
opers unconcerned with software security. However, we re-
mind those who are concerned that their peers are likely to
take their security tool recommendations seriously. Our find-
ings, here and elsewhere [23], indicate that developers are
more likely to adopt tools they learn about from their peers
than ones they learn about elsewhere. These findings show
that individuals who tell others about the tools they use can
be forces for change in their organizations. In addition, devel-
opers with good reputations on the Internet can act as forces
for change within communities of developers in the software
development community at large.

LIMITATIONS
One limitation for our retrospective interview study is the re-
call problem. Some participants noted that it was difficult to
remember the tools they have tried out. Thus, our data on
instances of adoption may be incomplete. For example, par-
ticipants might remember the functionality of a security tool,
but forget how complete its documentation was. We asked
pointed questions to try to obtain this data. If a participant
did not remember, we assumed the missing data was not im-
portant in his decision-making. Also, participants tended to
forget the names of security tools they rejected more than
those they adopted. In order to remind participants of the
tools they might have tried, we created a list of well-known
security tools, grouped by the programming languages they
work with. After participants mentioned all the security tools
they remember, we asked them to read this list based on the
language they used most to find if they missed any tools.

This retrospective interview study also could not adequately
capture the temporal aspects of DOI theory. An observational
study might be better suited for evaluating how well the DOI
adoption process describes security tool adoption.

Another limitation of our interview study is that, given the
nature of semi-structured interviews, we did not ask all par-
ticipants the same questions. Thus, we cannot guarantee that
our data is complete since we cannot know how participants
would respond to questions we did not ask them. However,
we think that the breadth of our results justifies this possible
incompleteness.

Because we designed our interview questions based on DOI
theory and our initial ideas of how it would apply to security
tool adoption, we may have biased our results with our pre-
conceptions. To reduce this risk, we asked participants many
open-ended questions to describe their adoption and rejection
experiences before we started asking any pointed questions
based on our interpretation of DOI. We tried to record all fac-
tors that we had not initially predicted and integrate these fac-
tors into our questions for subsequent interviewees.

The participants we recruited may not be representative of all
software developers for a number of reasons. Though we did
not specifically choose participants based on location, more
than half of our participants reported working in the United
States. All participants we recruited speak English, while
many potential security tool adopters do not speak English.
Also, developers who were willing to participate our study

might hold more positive attitudes than average toward the
software engineering research community, and perhaps are
more likely to be aware of and adopt new security tools. We
did not speak with any developers outside of industry, such
as those who contribute to open-source software. This lim-
its the kinds of social systems to which our work generalizes
to those in industry. Most of our subjects’ primary respon-
sibility was writing code. While we did interview security
experts and managers, our implications apply more reliably
to those whose primary activity is writing code. Finally, we
did not collect detailed demographic information from par-
ticipants. Such qualities of individuals, such as age [21] and
gender [11], can affect various aspects of software develop-
ment, and may also affect social processes such as adoption.

FUTURE WORK
As mentioned in the Limitations section, we did not interview
developers about open-source development. An interview
study of developers who write open-source software would
help determine if our findings generalize to developers out-
side of industry.

We believe that a qualitative and comprehensive model of
influences on developer adoption of security tools would be
more actionable than the current descriptions of participants’
responses. Such a model would incorporate developers’ per-
ception of technological qualities of security tools as well
as the factors concerning interpersonal communication pre-
sented here. For instance, several participants mentioned that
automatabilty and interoperability with technologies they al-
ready used were important factors when deciding whether or
not to adopt a tool. Our analysis currently does not account
for these more technical factors, but could with further inves-
tigation.

A survey study would also be helpful in evaluating and quan-
tifying our findings. We hope that this will result in vali-
dated recommendations we can make to managers seeking
to increase security tool adoption in their organizations and
a quantified predictive model that can predict whether or not
developers in a given organization will adopt a given tool.

Our results have also shown that some developers attribute
their tool use to having seen exploits on their companies’
code; others attribute their disuse to having never been
“hacked”. This indicates that one way to persuade develop-
ers to use security tools may be to frame the results of such
tools in terms of specific attacks that would successfully ex-
ploit vulnerabilities in developers’ code. Future study could
explore this.

CONCLUSION
There are many security tools that can help software develop-
ers write more secure code, but not all developers use these
tools. In this paper, we have presented a number of social and
organizational factors that we found influenced developers’
security tool adoption decisions. We found these factors by
conducting interviews, based on an established framework for
understanding adoption called diffusion of innovations, with
42 professional software developers about their past experi-
ence about security tools. Our results suggest several ways

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1104

for people in different roles in the software development com-
munity to improve the adoption rate of security tools, and thus
to foster a culture that produces more robust and secure soft-
ware.

Acknowledgment
Thanks to all participants for their time, to Michael Bazik
for his comments and feedback, and to the National Security
Agency for funding this research.

REFERENCES
1. Ajzen, I. The theory of planned behavior.

Organizational Behavior and Human Decision
Processes 50, 2 (Dec. 1991), 179–211.

2. Bacchelli, A., and Bird, C. Expectations, outcomes, and
challenges of modern code review. In Proceedings of the
35th International Conference on Software Engineering
(2013).

3. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B.,
Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S.,
and Engler, D. A few billion lines of code later: using
static analysis to find bugs in the real world.
Communications of the ACM 53, 2 (Feb. 2010), 66–75.

4. Boehm, B. W. Software Engineering Economics, 1st ed.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1981.

5. Buxton, J., and Malcolm, R. Software technology
transfer. Software Engineering Journal 6, 1 (Jan. 1991),
17 –23.

6. Cornell, D. Remediation statistics: What does fixing
application vulnerabilities cost? RSA Conference, 2012.

7. Cowley, S. Code red costs could top $2 billion.
PCWorld, August 2001. http:
//www.pcworld.com/article/57744/article.html.

8. Davis, F. D. Perceived usefulness, perceived ease of use,
and user acceptance of information technology. MIS
Quarterly 13, 3 (Sept. 1989), 319–340.

9. Geer, D. Are companies actually using secure
development life cycles? IEEE Computer 43, 6 (June
2010), 12–16.

10. Gorschek, T., Wohlin, C., Carre, P., and Larsson, S. A
model for technology transfer in practice. IEEE
Software 23, 6 (Nov.-Dec. 2006), 88–95.

11. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J.,
Rector, K., and Kwan, I. End-user debugging strategies:
A sensemaking perspective. ACM Transactions on
Computer-Human Interaction 19 (2012), 5:1–5:28.

12. Hardgrave, B. C., Davis, F. D., and Riemenschneider,
C. K. Investigating determinants of software developers’
intentions to follow methodologies. Journal of
Management Information Systems 20, 1 (July 2003),
123–151.

13. Howard, M., and Lipner, S. The Security Development
Lifecycle. Microsoft Press, Redmond, WA, USA, 2006.

14. Iivari, J. From a macro innovation theory of IS diffusion
to a micro innovation theory of IS adoption: An
application to CASE adoption. In Proc. of the IFIP
WG8.2 Working Group on Information Systems
Development (1993), 295–320.

15. Iivari, J. Why are CASE tools not used?
Communications of the ACM 39, 10 (Oct. 1996),
94–103.

16. Kemerer, C. F. How the learning curve affects CASE
tool adoption. IEEE Software 9, 3 (May 1992), 23–28.

17. Koppel, R., Wetterneck, T., Telles, J. L., and Karsh,
B.-T. Workarounds to barcode medication
administration systems: Their occurrences, causes, and
threats to patient safety. Journal of the American
Medical Informatics Association 15, 4 (2008), 408 –
423.

18. McGraw, G. Software security. IEEE Security and
Privacy 2, 2 (Mar.-Apr. 2004), 80–83.

19. Meyerovich, L. A., and Rabkin, A. S. Socio-plt:
principles for programming language adoption. In Proc.
of Onward!, ACM (2012), 39–54.

20. Moore, G. C., and Benbasat, I. Development of an
Instrument to Measure the Perceptions of Adopting an
Information Technology Innovation. Information
Systems Research 2, 3 (Sept. 1991), 192–222.

21. Morrison, P., and Murphy-Hill, E. Is programming
knowledge related to age? Mining Software Repositories
(2013), 3–6.

22. Murphy-Hill, E., Jiresal, R., and Murphy, G. C.
Improving software developers’ fluency by
recommending development environment commands. In
Proc. of FSE, ACM (2012), 42:1–42:11.

23. Murphy-Hill, E., and Murphy, G. C. Peer interaction
effectively, yet infrequently, enables programmers to
discover new tools. In Proc. of CSCW (2011), 405–414.

24. Nahar, N., Kakola, T., and Huda, N. Diffusion of
software technology innovations in the global context. In
Proc. of the Hawaii International Conference on System
Sciences (Jan. 2002), 2749–2757.

25. Nov, O., and Arazy, O. Personality-targeted design:
theory, experimental procedure, and preliminary results.
In Proc. of CSCW, ACM (New York, NY, USA, 2013),
977–984.

26. Parnin, C., Bird, C., and Murphy-Hill, E. Java generics
adoption: how new features are introduced, championed,
or ignored. In Proc. of MSR, ACM (2011), 3–12.

27. Pham, R., Singer, L., Liskin, O., Figueira Filho, F., and
Schneider, K. Creating a shared understanding of testing
culture on a social coding site. In Proc. of ICSE, IEEE
Press (Piscataway, NJ, USA, 2013), 112–121.

28. Premkumar, G., and Potter, M. Adoption of computer
aided software engineering (CASE) technology: an
innovation adoption perspective. SIGMIS Database 26,
2–3 (May 1995), 105–124.

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1105

http://www.pcworld.com/article/57744/article.html
http://www.pcworld.com/article/57744/article.html

29. Raghavan, S., and Chand, D. Diffusing
software-engineering methods. IEEE Software 6, 4 (July
1989), 81–90.

30. Rai, A., and Howard, G. Propagating case usage for
software development: An empirical investigation of key
organizational correlates. Omega 22, 2 (Mar. 1994),
133–147.

31. Rai, A., and Patnayakuni, R. A structural model for
CASE adoption behavior. Journal of Management
Information Systems 13, 2 (Sept. 1996), 205–234.

32. Riemenschneider, C., Hardgrave, B., and Davis, F.
Explaining software developer acceptance of
methodologies: a comparison of five theoretical models.
IEEE TSE 28, 12 (Dec. 2002), 1135–1145.

33. Rigby, P. C., and Bird, C. Convergent Software Peer
Review Practices. In Proceedings of the the joint
meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC/FSE),
ACM (2013).

34. Rogers, E. M. Diffusion of Innovations. Free Press,
1995.

35. Seaman, C. Qualitative methods in empirical studies of
software engineering. IEEE TSE 25, 4 (1999), 557–572.

36. Singer, L., and Schneider, K. Influencing the adoption of
software engineering methods using social software. In
Proc. of ICSE (2012), 1325–1328.

37. Singer, L.-G. Improving the Adoption of Software
Engineering Practices Through Persuasive
Interventions. PhD thesis, Gottfried Wilhelm Leibniz
Universitt Hannover, 2013.

38. Straus, S. G., Bikson, T. K., Balkovich, E., and Pane,
J. F. Mobile technology and action teams: Assessing
blackberry use in law enforcement units. Proc. of CSCW
19, 1 (2010), 45–71.

39. Thompson, R. L., Higgins, C. A., and Howell, J. M.
Personal Computing: Toward a Conceptual Model of
Utilization. MIS Quarterly 15, 1 (Mar. 1991), 125.

40. Venkatesh, V., and Davis, F. D. A theoretical extension
of the technology acceptance model: Four longitudinal
field studies. Management Science 46, 2 (Feb. 2000),
186–204.

41. Xie, J., Lipford, H., and Chu, B. Why do programmers
make security errors? In Proc. of Visual Languages and
Human-Centric Computing (Sept. 2011), 161–164.

CSCW 2014 • Collaborative Software Development February 15-19, 2014, Baltimore, MD, USA

1106

	Introduction
	Related Work
	Adoption Theory
	Software Technology Transfer
	Adoption of Software Engineering Technologies

	Methodology
	Recruitment and Incentives
	Participants
	Interview Methodology
	Data Analysis

	Participants' Security Tool Use Rates
	Organizational Factors
	Policies and Standards
	Culture
	Domain and Security Concerns
	Structure
	Education and Training

	Communication Channel Factors
	Exposure
	Trust

	Discussion
	Limitations
	Future Work
	Conclusion
	REFERENCES

