
 

 

Achieving Convergence in Operational Transformation:             
Conditions, Mechanisms and Systems    

Yi Xu, Chengzheng Sun, Mo Li 

School of Computer Engineering, Nanyang Technological University, Singapore 

 
ABSTRACT 

In this paper, we present a comprehensive and in-depth study 

on convergence preservation and avoidance in Operational 

Transformation (OT) systems. In this study, we discovered 

basic conditions, transformation patterns, and mechanisms 

for avoiding Convergence Property 2 (CP2), and established 

CP2-avoidance correctness of seven major OT systems. Fur-

thermore, we proposed improvements to existing systems 

and designed a new OT system capable of avoiding CP2 with 

a unique combination of novel features. These results con-

tribute significantly to the advancement of OT and collabora-

tion-enabling technology. 
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INTRODUCTION 

Consistency maintenance is a main challenge in building 

real-time collaborative applications over high latency com-

munication environments like the Internet [4, 17]. Due to its 

non-blocking, fine-grained concurrency, and unconstrained 

interaction properties, Operational Transformation (OT) is 

particularly suitable for consistency maintenance in such 

environments, and has been increasingly adopted in industrial 

applications, e.g. Google Wave/Docs1, IBM OpenCoWeb2, 

and Codoxword3. 

In OT-supported real-time collaborative editing applications, 

multiple users may freely and simultaneously generate edit-

ing operations, which may be transformed and executed in 

different orders at different collaborating sites [1, 2, 3, 18, 

24]. Document convergence is a key consistency require-

ment: the final documents at all sites must be identical after 

executing the same group of operations [18]. Past research 

                                                           

1
 http://docs.google.com 

2 https://github.com/opencoweb/coweb#readme 
3 http://www.codoxware.com 
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has discovered important transformation properties for 

achieving convergence. In the first OT system [3], a trans-

formation property, Convergence Property 1 (CP1)4 , was 

identified, which ensures the same document is produced by 

executing two concurrent operations in different orders. Fol-

low-up research found CP1 was insufficient to ensure con-

vergence under certain circumstances, and added another 

transformation property, Convergence Property 2 (CP2) 5 , 

which ensures the same operation is produced in transform-

ing one operation against two concurrent operations in differ-

ent orders (see the next section for precise definitions of CP1 

and CP2).    

There exist two general approaches to achieving convergence 

in OT: one is to design application-specific transformation 

functions capable of preserving CP1/CP2; the other is to de-

sign generic control algorithms capable of avoiding CP1/CP2. 

Past research has found that it is relatively easy to preserve 

CP1 by transformation functions and to avoid CP2 by control 

algorithms. Multiple CP1-preserving transformation func-

tions for a variety of data and operation models have been 

designed [1, 11, 14, 20, 24]; and numerous control algo-

rithms capable of avoiding CP2 have been invented [8, 10, 

15, 16, 18, 21, 23]. An OT control algorithm is said to be 

able to avoid CP2 if it works with transformation functions 

capable of only preserving CP1 for achieving convergence. 

There were some attempts to design transformation functions 

for preserving CP2 in character-wise text editing systems [6, 

7, 12], but avoiding CP2 by control algorithms has been fa-

vored due to its advantage of being generic and applicable to 

different data and operation models for supporting a range of 

applications. Recent OT systems for advanced collaborative 

applications, e.g. 2D spreadsheets [22] and 3D digital media 

design systems [1], have been designed with a combination 

of transformation functions6 for preserving CP1 and control 

algorithms for avoiding CP2 [21].     

Despite the wide adoption of the CP2-avoidance strategy in 

OT systems, the basic conditions and mechanisms for CP2-

avoidance have not been well-understood. Most OT systems 

that claimed CP2-avoidance had justified their claims by 

showing the absence of transforming an operation against the 

same pair of operations in different orders, which is intuitive-

                                                           

4 CP1 was named as Transformation Property (TP) in [3], and 

Transformation Property 1 (TP1) in [14]. 
5CP2 was named as Transformation Property 2 (TP2) in [14], 

which is the same as Transpose Property 5 proposed in [11]. 
6 Transformation functions must preserve, in addition to generic 

CP1, application-specific combined effects for concurrent opera-

tions [1, 20, 22] or operation intentions [18].  
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ly derived from CP2 (see details in the next section) [8, 15, 

23]. However, more recent research has found the mere ab-

sence of transforming the same pair of operations in different 

orders is insufficient to avoid CP2 (see the next section for a 

counter-example), and a correct condition of avoiding CP2 is: 

to avoid transforming two operations in different contexts 

[21]. The discovery of this condition has advanced OT 

knowledge, but also cast doubt on the CP2-avoidance claims 

of prior OT systems: are they really able to avoid CP2? After 

all, they were either not verified or verified by an insufficient 

condition. Resolving this doubt is important as it is related to 

the correctness of a large number of major OT systems [8, 10, 

15, 16, 18, 21, 23, 24], some of which are being used in in-

dustrial applications with millions of users, e.g. the Jupiter 

OT [10] is the basis for Google OT [24, 16], which is used 

for Google Docs; and COT [21] is used in Codoxword and 

IBM OpenCoWeb. As OT is increasingly applied to a wider 

range of real-world applications and used by more and more 

people, ensuring and verifying correctness of its core algo-

rithms become more and more important.  

To address these open issues, we set out to study seven major 

OT systems that claimed or was recognized for being capable 

of avoiding CP2, including Jupiter7[10], NICE[15], Google 

OT [24,16], SOCT3 and SOCT4 [23], TIBOT [8], and COT 

[21], with the following objectives: (1) to validate whether 

they indeed meet the correct CP2-avoidance condition; and 

(2) to find out how and why they did it (if they can). From 

this study, we have not only achieved the original objectives, 

but also made important discoveries in CP2-avoidance condi-

tions, and basic transformation patterns and mechanisms that 

can be used to avoid CP2 in different OT systems. Further-

more, we proposed improvements to examined systems and 

designed a new OT system capable of avoiding CP2 with a 

unique combination of novel features. We report these re-

search findings in this paper. 

The rest of this paper is organized as follows. First, we intro-

duce background knowledge related to this work. Then, we 

discuss CP2-avoidance conditions. Next, we present basic 

CP2-avoidance transformation patterns and mechanisms. 

Based on these patterns and mechanisms, we present our 

CP2-avoidance validation of seven systems. Furthermore, we 

propose improvements to Jupiter and Google OT, present the 

design of a new OT system, and discuss ideas of future work 

inspired by this study. Finally, we summarize the main con-

tributions of this work.  

BACKGROUND KNOWLEDGE 
Causal and Total Ordering Relations 
Following Lamport [5], the causal ordering relation of opera-

tions is defined as follows [3]. 

Definition 1. Causal Relation "→". Given two operations Oa 

and Ob, generated at site i and j, respectively, Oa is causally 

                                                           

7
When Jupiter OT was published in 1994 [10], CP2 had not yet be 

identified as an OT convergence requirement. So Jupiter OT was 

not designed to purposely avoid CP2, but to rely solely on CP1 to 

achieve convergence.   

before Ob, denoted by Oa→Ob, if and only if: (1) i=j and the 

generation of Oa happened before the generation of Ob; (2) i≠j 

and the execution of Oa at site j happened before the 

generation of Ob; or (3) there exists an operation Ox such that 

Oa→Ox and Ox→Ob. 

Definition 2. Concurrent Relation "‖". Given two operations 

Oa and Ob, Oa and Ob are concurrent, denoted by Oa‖Ob, if 

and only if neither Oa → Ob nor Ob → Oa. 

In real-time collaborative editing systems, operations with 

causal relationships are executed in their causal orders; but 

concurrent operations may be executed in any orders [3, 17]. 

In OT systems, concurrent operations are transformed to 

achieve consistency, but transformation orders are also gov-

erned by causal relations among operations.  

Definition 3. Total Ordering Relation "⇒". A relation "⇒" is 

a total ordering relation among operations in a session if the 

following statements hold for any operations Oa, Ob, and Oc, 

where Oa ≠Ob≠Oc: (1) if Oa⇒Ob and Ob⇒Oc, then Oa⇒Oc 

(transitivity); and (2) Oa⇒Ob or Ob⇒ Oa (totality).   

In contrast to the causal relation, which defines a partial or-

dering relation among operations, a total ordering relation is a 

complete ordering relation among operations. The "totality" 

condition in the total ordering relation means that all opera-

tions are ordered under "⇒". In this work, we are particularly 

interested in a special class of total ordering relations that are 

consistent with the causal ordering relation among the same 

group of operations, i.e. for any Oa and Ob, if Oa→Ob, then 

Oa⇒Ob. In the rest of this paper, we assume "⇒" is always 

consistent with "→". As will become clear later, such total 

ordering relations play a key role in defining CP2-avoidance 

conditions.  

Operation Context and Context-based Conditions 
In OT systems, every operation O is associated with a con-

text, which represents the document state on which O is de-

fined [17, 18, 21]. For the purpose of OT design, the context 

of O needs not be represented by a real document state, but 

can be represented by a set of operations (in their original 

forms) that have been executed to create the state on which O 

is defined [21]. 

Definition 4. Document State Representation. A document 

state, denoted as S, can be represented as follows:(1) the 

initial document state is represented as an empty set S = { }; 

(2) after executing an operation O on the document, the new 

state is represented by: S = S ∪ {org(O)}, where org(O) 

represents the original form of O; if O is an original operation 

(generated by a user), org(O) = O.  

Definition 5. Operation Context Representation. The context 

of an operation O, denoted as C(O), is represented as 

follows: (1) for an original operation O, C(O) = S, where S is 

the document state from which O is generated; (2) for a 

transformed operation O′, C(O′) = C(O) ∪ {org(Ox)}, where 

O′ = T(O, Ox), and T is a function that transforms O into O′ 

according to the impact of Ox. 

The significance of operation context is that it provides the 

ground for interpreting the effect of an operation and for 
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reasoning about the relations among operations, which are 

essential for ensuring correct operation execution and trans-

formation [17, 18, 21]. Among others, two context-based 

conditions are directly relevant to this work: 

1. Context-equivalence condition for execution: given an 

operation O and a document state S, O can be correctly 

executed on S only if C(O) = S.  

2. Context-equivalence condition for transformation: giv-

en two operations O1 and O2, they can be correctly 

transformed with each other, by invoking T(O1, O2) or 

T(O2, O1), only if C(O1) = C(O2).  

In theory, any operation (either original or transformed) has 

a context, but operations included in a context are all in 

original forms. Causal and total ordering relations are de-

fined only among original operations [21]. For notation 

conciseness, however, we assume an automatic operation 

form conversion, from "O" to "org(O)", whenever "→", 

"‖", "⇒" and other context set operators (e.g. "∪") are used, 

e.g. "Oa⇒Ob" means "org(Oa) ⇒org(Ob)". When we say an 

operation O is in an operation context, we mean org(O) is 

in a context. We use the notation Oa{b} to denote that Ob is 

in the context of Oa, which can be used to represent the 

result of transforming Oa against Ob, i.e. Oa{b} = T(Oa, Ob). 

If O is generated from an initial document state, no opera-

tion is included in its context, so it can be expressed as O{} 

or simply O.  

Convergence Properties   
Convergence Property 1 (CP1): Given Oa and Ob defined 

on the state S, if Oa{b} = T(Oa, Ob), and Ob{a} = T(Ob, Oa), 

the following holds: 

S ○ Oa ○ Ob {a}= S ○ Ob ○ Oa{b}, 

which means the same document is produced by applying Oa  

and Ob{a} in sequence on S, and applying Ob  and Oa{b} in 

sequence on S, respectively. 

Convergence Property 2 (CP2): Given Oa, Ob and Oc de-

fined on the same state, if Oc{b} = T(Oc, Ob) and Ob{c} = 

T(Ob, Oc), the following holds: 

T(T(Oa, Ob), Oc{b}) = T(T(Oa, Oc), Ob{c}), 

which means the same operation is produced by transforming 

Oa against Ob and then Oc{b}, and transforming Oa against 

Oc and then Ob{c}, respectively.  

CP2-AVOIDANCE CONDITIONS  
An Insufficient CP2-Avoidance Condition 

CP2 requires the same operation is produced in transforming 

one operation against the same pair of operations in different 

orders, so it is intuitive to derive: CP2 can be avoided if an 

OT system can avoid transforming an operation against the 

same pair of operations in different orders. This condition 

has been explicitly or implicitly used to validate CP2-

avoidance in several OT systems [8, 15, 23], but it is insuffi-

cient to achieve convergence.  

A counter-example to this condition is given in Figure 1. In 

this scenario, there are three operations: O1 = I(2, x) (to insert 

"x" at position 2), O2 = D(1, b) (to delete "b" at position 1), 

and O3= I(1, y) (to insert "y" at position 1), concurrently gen-

erated from the same initial document state "abc". All possi-

ble execution and transformation paths of these operations 

are illustrated in a Context-based Operation Transformation 

Space (COTS)8 in Figure 1.   

O3=I(1,y)

O2=D(1,b)

O1{2,3}=T(O1{2},O3{2})=I(1,x)

O3{2}=T(O3,O2)=I(1,y)

“abc” “abxc”

“aybc”

“ac”

“ayc” “axyc”/“ayxc”

O1=I(2,x)

O2{1,3}=T(O2{1},O3{1})=D(2,b)

O3{1}=T(O3,O1)=I(1,y)

“aybxc”
O1{2}= T(O1,O2)

 
    Figure 1: A counter-example to the insufficient CP2-

avoidance condition (assuming priority(O1) > priority(O3)). 

Suppose an OT system forces operation execution and trans-

formation along only two paths in Figure 1:  

1. In one path, O2, O3{2} and O1{2, 3} are executed in 

sequence, where: 

(1) O3{2} = T(O3, O2) = I(1, y);   

(2) O1{2, 3} = T(O1{2}, O3{2}) = I(1, x);  

which results in a final state “axyc”;  

2. In another path, O1, O3{1} and O2{1,3} are executed in 

sequence, where: 

(1) O3{1} = T(O3, O1) = I(1, y); 

(2) O2{1, 3} = T(O2{1}, O3{1}) = D(2, b); 

which results in a final state “ayxc”.  

Clearly, no operation has ever been transformed against two 

other operations in different orders along these two paths, but 

the final states produced by the two paths are not identical – 

convergence is not ensured, which means the condition is 

insufficient to achieve convergence.   

A General CP2-Avoidance Condition 

A correct and general CP2-avoidance condition was discov-

ered in [21], which can be stated as: CP2 can be avoided if 

an OT system can avoid transforming the same pair of opera-

tions in different contexts.  

It can be seen that transformations along the two divergent 

paths in Figure 1 violate this condition:  

1. O2 and O3 are transformed under different contexts: 

T(O3, O2) in 1-(1) vs T(O2{1}, O3{1}) in 2-(2). 

2. O1 and O3 are also transformed under different contexts: 

T(O1{2}, O3{2}) in 1-(2) vs T(O3, O1) in 2-(1). 

The condition in [21] requires the contexts of any two opera-

tions are always the same whenever they are transformed 

with each other, but it does not specify what concrete condi-

tions the contexts of two operations should meet when they 

are transformed. This CP2-avoidance condition is general but 

unsuitable for direct use in validating specific OT systems. In 

this work, we discovered a special CP2-avoidance condition 

that satisfies the general condition and also defines concrete 

                                                           

8
In a COTS, a vertex represents a document state, and an arrow represents 

an operation: the starting vertex of the arrow represents the definition state 

of the operation, and the ending vertex represents the resulting state of the 

operation. A correct COTS is one that ensures there is only one label for 

each vertex or arrow.  
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context conditions between two operations for avoiding CP2; 

and we use this new condition to validate seven OT systems.  

A Special CP2-Avoidance Condition 

Definition 6. Totally Ordered and Equivalent Context 

Relation " ". Given a "⇒" among all operations in a 

session, two operations Oa and Ob have a Totally Ordered 

and Equivalent Context Relation, denoted by C(Oa)  C(Ob), 

when the following conditions are met: (1) Oa ⇒ Ob; (2) C(Oa) 

= C(Ob); and (3) Ox is included in C(Oa) and C(Ob) if and 

only if:  

1. Ox ⇒ Oa ⇒ Ob; or  

2. Oa ⇒ Ox ⇒ Ob and Ox → Ob. 

The " " relation requires the contexts of Oa and Ob include 

all and only those operations that are totally before both Oa 

and Ob, and those that are totally between Oa and Ob and 

causally before Ob. The following theorem establishes the 

uniqueness of the context under this relation. 

Theorem 1. For any two operations Oa and Ob in a session, 

operations included in their contexts are uniquely defined if 

C(Oa)  C(Ob). 

Proof: In a given session, the causal ordering relation "→" 

between any pair of operations must be fixed; and, under a 

given total ordering relation "⇒", the total ordering among all 

operations must be unique by Definition 3. The theorem fol-

lows directly from the uniqueness of the "⇒" and "→" rela-

tions among operations in the same session and the definition 

of " ".  

The general CP2-avoidance condition can be restated as fol-

lows: CP2 can be avoided if an OT system can ensure the 

same pair of operations are transformed always on the same 

context. This restatement highlights the context uniqueness 

essence of CP2-avoidance. The following theorem establish-

es a special CP2-avoidance condition.  

Theorem 2. CP2 can be avoided if an OT system can ensure a 

pair of operations Oa and Ob are transformed only if C(Oa)  

C(Ob) .  

Proof: It is derived directly from the general CP2-avoidance 

condition and the uniqueness of the context of Oa and Ob 

under C(Oa) C(Ob) (Theorem 1). 

We will show this special condition is general enough to 

cover all existing OT systems capable of avoiding CP2.  

CP2 AVOIDANCE MECHANISMS AND PATTERNS 

In this section, we discuss the basic mechanisms and trans-

formation patterns that are required to meet the special CP2-

avoidance condition. 

Total Ordering Schemes 

A total ordering relation "⇒" among operations in a session is 

at the core of the special CP2-avoidance condition, so a total 

ordering scheme is a basic mechanism for achieving CP2-

avoidance in OT systems. 

For a group of n operations in a session, there may be a max-

imum of n! ways of totally ordering them. The special CP2-

avoidance condition only requires the same "⇒" is used to 

order all operations in the same session, without imposing 

constraints on specific total ordering relations or ways of 

creating such total ordering relations. We describe three types 

of total ordering schemes below.  

An OT system may use an implicit total ordering scheme 

based on a central server for broadcasting operations among 

collaborating sites: each site connects and sends local opera-

tions to the server via a FIFO (First In First Out) communica-

tion channel (e.g. a TCP connection); and the central server 

serializes operations and broadcasts them among all sites. 

The operation serialization order at the server implicitly 

forms a total order among all operations. This kind of total 

ordering scheme can be found in Jupiter [10], Google OT for 

Wave/Docs [16, 24], NICE [15], and Codoxword [21].  

An OT system may also use an explicit total ordering scheme 

based on a special sequencer, which does not broadcast oper-

ations but only generates continuous sequence numbers for 

ordering operations. After generating a local operation, a 

collaborating site requests the central sequencer for a se-

quence number to timestamp this operation. In this way, all 

operations are totally ordered by sequence numbers. This 

total ordering scheme is used in SOCT3 and SOCT4 [23]. 

A total ordering scheme can be based on a distributed 

timestamping scheme without involving any central serv-

er/sequencer: collaborating sites use special rules to broad-

cast and timestamp operations so that a total ordering relation 

among all operations can be unambiguously derived. One 

example of such distributed schemes is the Time-Interval-

Based OT system TIBOT [8]. 

One way or another, all existing OT systems that claimed or 

were recognized for CP2-avoidance have a total ordering 

scheme. However, the formation and use of such total order-

ing schemes may be implicit in these systems.  

Operation Sequence and Transformation Patterns  

We have identified several basic operation sequences and 

transformation patterns that can be used to ensure C(Oa)  

C(Ob) in transformations, which are described below. 

Definition 7. Totally-Ordered and Contextualized Operation 

Sequence (TOCOS). Given a list of operations L = [O1, 

O2, ..., On] and a "⇒" among all operations in a session, L is 

a TOCOS if it is an empty list or a list with one operation, or 

the following holds (when n≥2): (1) Oi ⇒ Oj, for 1 ≤ i < j ≤ n; 

and (2) C(Oi+1) = C(Oi) ∪ {Oi}, for 1≤ i<n.   

All operations (if any) in a TOCOS are required to be  totally 

ordered and contextualized, i.e. the context of an operation 

Oi+1 must include Oi and all operations in the context of Oi. 

Contextualization can be achieved at the time of operation 

generation if Oi→Oi+1, or by transformation if they are con-

current, i.e. Oi‖Oi+1.   

Based on TOCOS, we define two basic operation sequence 

patterns related to avoiding CP2. 
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Definition 8. Operation Sequence Pattern 1 (OSP1). Given a 

TOCOS L=[O1, O2, ..., On] and an operation Ox that is not in 

L, L is an OSP1 with respect to Ox if L is an empty list or the 

following conditions hold: (1) C(O1)  C(Ox); (2) On ⇒ Ox; 

and (3) L includes every operation Oy in a session, such that 

Oy ‖ Ox and O1⇒Oy⇒On (when n≥2).  

The first operation (if any) in L must have the " " relation 

with Ox; all operations in L must be totally ordered before Ox; 

all operations that are concurrent with Ox and totally ordered 

between O1 and On must be included in L.   

Definition 9. Operation Sequence Pattern 2 (OSP2). Given a 

TOCOS L = [O1, O2, ..., On] and an operation Ox that is not in 

L, L is an OSP2 with respect to Ox if L is an empty list or the 

following conditions hold:(1) C(Ox)  C(O1); (2) Oi → Oj, 

for 1 ≤ i < j ≤ n (when n ≥ 2); and (3) L includes every 

operation Oy in the session, such that O1→Oy→On. 

Ox must have the " " relation with the first operation (if 

any) in L, which implies Ox is totally ordered before all oper-

ations in L; all operations in L must be causally related; and 

all operations that are causally ordered between O1 and On 

must be included in L.  

The following LT function transforms an operation O against 

a sequence of operations in L to produce O{L}.  

List Transformation: LT(O, L) = O{L} 

1. O{L} := O;  

2. for (i = 1; i ≤ |L|; i++) { 

O{L} := T(O{L}, L[i]);} 

The SLT function symmetrically transforms an operation O 

with operations in L to produces O{L} and L{O}. 

Symmetric List Transformation: SLT(O, L)=(O{L}, L{O}) 

1. O{L} := O;  

2. for (i = 1;i ≤ |L|; i++) { 

L{O}[i] := T(L[i], O{L}); 

O{L} := T(O{L}, L[i]); } 

LT(Ox, L) and SLT(Ox, L) define two basic CP2-avoidance 

transformation patterns under the condition that L is an OSP1 

or OSP2 with respect to Ox, which is established by the fol-

lowing theorem.  

Theorem 3. If L is an OSP1 or OSP2 with respect to Ox, CP2 is 

avoided in all transformations in LT(Ox, L) and SLT(Ox, L). 

Proof: Consider the transformation pattern: LT(Ox, L) where 

L is an OSP1 with respect to Ox. From Definition 8, we know 

C(L[1]) C(Ox). Therefore, CP2 can be avoided in T(Ox, 

L[1]) by Theorem 2. After this transformation, Ox becomes 

Ox{L[1]}, which implies C(L[2]) C(Ox{L[1]}) by Defini-

tion 6 and Definition 8, hence CP2 can be avoided in 

T(Ox{L[1]}, L[2]). By a deductive argument, CP2 can be 

avoided in every transformation in LT(Ox, L). Following the 

same reasoning, CP2 can be avoided in all transformation 

patterns stated in the theorem.  

VALIDATING OT SYSTEMS FOR CP2 AVOIDANCE   

One major challenge in this work is the diversity of the sys-

tems to be examined: they were designed for different pur-

poses and had major differences in: (1) system structures, e.g. 

some use a central server and some do not; (2) operation 

propagation protocols, e.g. some delay propagating opera-

tions until certain conditions are met, and some do not; and 

(3) mechanisms and algorithms, e.g. some use state/context-

vectors, and some do not; some are based on two-

dimensional (2D) state-spaces, and some use one-

dimensional (1D) buffers. These systems were designed by 

different research groups and described in different styles and 

terminologies, which present challenges to figure out their 

real similarities and differences.  

Our approach to addressing these challenges is to devise a 

general framework encapsulating the basic mechanisms and 

transformation patterns that may occur at three critical loca-

tions: (1) local sites, where operations are generated; (2) the 

server site (optional), where operations are broadcast to other 

sites; and (3) remote sites, where operations generated by 

other sites are replayed. Then, we dissect the seven OT sys-

tems one-by-one to extract relevant schemes and algorithms, 

and describe them uniformly in terms of the basic mecha-

nisms and patterns under the framework. Finally, we validate 

CP2-avoidance by matching their transformation patterns 

with CP2-avoiding transformation patterns established in the 

prior section.  

In addition, we use a running example to illustrate how the 

seven systems work in concrete scenarios, in which there are 

three collaborating sites (plus an optional server) and four 

operations with causal relations: (O1→O4) ‖ (O2→O3), and 

total ordering relations: O1⇒O2⇒O3⇒O4.   

Jupiter  

In the Jupiter system [10], collaborating clients are connected 

to a central server via TCP connections in a star-like topolo-

gy. A client can communicate directly with the server only; 

the server sequentially processes and broadcasts operations 

among all clients. 

Local processing 

When Ox is generated by a client, it is executed immediately 

at the local site and propagated to the server as-is. Local op-

erations are propagated sequentially and saved along the lo-

cal dimension of a 2D state-space.  

Server processing 

The server maintains multiple 2D state-spaces9, one for every 

client. A state-space consists of a local dimension for opera-

tions from the corresponding client, and a global dimension 

for operations from all other sites. The server handles Ox as 

follows:  

1. locates the space for the client from which Ox comes; 

2. searches this space to find the state that matches the con-

text of Ox, and saves Ox at this matching state along the 

local dimension;  

                                                           

9The multiple 2D state-spaces maintenance was not reported in the 

Jupiter paper [10]. The description here is based on our under-

standing and derivation from other sources [9, 16, 24]. 
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3. transforms Ox symmetrically with a sequence of opera-

tions, denoted as L1, consisting of operations along the 

global dimension from the matching state to the final 

state of the space; this transformation can be expressed 

as: SLT(Ox, L1) = (Ox{L1}, L1{Ox})10; 

4. propagates Ox{L1} to other clients;  

5. saves Ox{L1} at the end of the global dimension of every 

other state-space maintained by the server. 

Remote processing 

Each client maintains a state-space similar to that at the serv-

er. Jupiter handles Ox{L1} at a remote site as follows:  

1. searches the space to find a matching state for Ox{L1}, 

and saves Ox{L1} at this matching state along the global 

dimension; 

2. transforms Ox{L1} symmetrically with a sequence of 

operations, denoted as L2, consisting of operations along 

the local dimension from the matching state to the final 

state of the space; this transformation can be expressed 

as SLT(Ox{L1}, L2)=(Ox{L1, L2}, L2{Ox});  

3. executes Ox{L1, L2}.  

CP2-avoidance validation 

It can be shown that L1 is an OSP1 with respect to Ox for 

SLT(Ox, L1), and L2 is an OSP2 with respect to Ox {L1} for 

SLT(Ox{L1}, L2) because: 

1. all operations in L1 and L2 are: 

(1) totally ordered by the server serialization;  

(2) contextualized by transformations in SLT;  

(3) concurrent with Ox as they are generated by other 

clients before Ox reaches these clients, and Ox is 

generated before they reach Ox's local site;   

2. L1 contains all operations that are totally before Ox,  and 

L1[1] Ox; 

3. L2 contains operations that are totally after Ox and caus-

ally related with each other, and Ox{L1} L2[1].   

By Theorem 3, Jupiter CP2-avoidance is confirmed.   

                                                           

10
For conciseness, details of using intermediate transformation 

results created during SLT/LT to update 2D state-spaces and other 

buffers for all systems are omitted.  

An example  

Consider operation O3{2} at Client 2 in Figure 2. Upon gen-

eration, it is executed immediately, appended at the end of 

the local dimension of a 2D state-space, and propagated to 

the server. At the server, the state-space for Client 2 is firstly 

located and searched to find the matching state at the end of 

O2. Then, O3{2} is saved after O2 along the local dimension, 

and symmetrically transformed with O1{2} along the global 

dimension, which produces two transformed operations: 

O3{1,2} and O1{2,3}, which are placed in corresponding 

dimensions of the state-space. O3{1,2} is propagated to Cli-

ents 1 and 3, and appended to the ends of global dimensions 

of their state-spaces as well. When O3{1,2} arrives at Client 

3, it is saved at the matching state at the end of O2{1} along 

the global dimension, then symmetrically transformed with 

O4{1,2} along the local dimension, which produces two 

transformed operations: O3{1,2,4} and O4{1,2,3} in corre-

sponding dimensions of the state-space. Finally, O3{1,2,4} is 

executed at Client 3. 

NICE 

The NICE system [15] is also based on a central server for 

serializing and broadcasting operations. NICE supports OT-

based flexible notification for both real-time and non-real-

time collaboration. We extract and describe only the relevant 

consistency maintenance aspects below.  

Local processing 

NICE handles local operations in the same way as Jupiter, 

except using a 1D buffer to save local operations.  

Server processing 

The server maintains multiple 1D buffers, one for every cli-

ent to maintain operations that are from other clients and 

have been broadcast. The server handles Ox as follows:  

1. locates the buffer for the client from which Ox comes; 

2. searches the buffer to find the matching state for Ox;  

3. transforms Ox symmetrically with a sequence of opera-

tions, denoted as L1, starting from matching state to the 

end of the buffer; this transformation can be expressed 

as: SLT(Ox, L1) = (Ox{L1}, L1{Ox}); 

4. propagates Ox{L1} to other clients;  

5. saves Ox{L1} at the end of every other 1D buffer. 

Figure 2: Jupiter: the server maintains three 2D state-spaces; each client maintains a single state-space; in a 2D state-space, an 

operation On{m} is represented by arrow labeled by n{m} (for conciseness), the local dimension is represented by south-east 

arrows, and the global dimension represented by south-west arrows. 
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Remote processing 

NICE handles Ox{L1} at a remote site as follows:  

1. searches the buffer for the state that matches the context 

of Ox{L1} (this state may not exist); 

2. transforms Ox{L1} symmetrically with a sequence of 

operations, denoted as L2, consisting of operations from 

the matching state (if exists) to the end of the buffer; this 

transformation can be expressed as SLT(Ox{L1}, L2) = 

(Ox{L1, L2}, L2{Ox});  

3. executes Ox{L1, L2} (no need to save it in the buffer).   

CP2-avoidance validation 

It can be shown that L1 is an OSP1 with respect to Ox in 

SLT(Ox, L1); and L2 is an OSP2 with respect to Ox{L1} in 

SLT(Ox{L1}, L2) by the same reasoning as that for Jupiter. By 

Theorem 3, NICE CP2-avoidance is confirmed.   

An example 

Consider operation O3{2} at Client 2 in Figure 3. Upon gen-

eration, it is executed immediately at Client 2, appended at 

the end of the local buffer, and propagated to the server. At 

the server, the buffer for Client 2 is located and searched to 

find the matching state at beginning of the buffer. Then, 

O3{2} is symmetrically transformed with O1{2}, which pro-

duces two transformed operations: (1) O3{1,2} is propagated 

to Clients 1 and 3, and appended to the ends of their buffers 

as well; (2) O1{2,3} is used to replace O1{2} in the buffer for 

Client 2. When O3{1,2} arrives at Client 3, it is symmetrical-

ly transformed with O4{1,2} since they share the same state, 

which produces two transformed operations: O3{1,2,4} is 

executed; and O4{1,2,3} is used to replace O4{1,2} in the 

buffer. 

Google OT for Google Wave and Docs 

Google OT for Google Wave and Docs [9, 16, 24] is 

adapted from Jupiter, with the same star-like architecture 

and a central server for serializing and broadcasting opera-

tions. Google OT adds a stop-and-wait propagation proto-

col between each client and the server. As a result, a single 

1D buffer at the server is adequate to maintain all possible 

states for transformation, which eliminates multiple 2D 

state-spaces in Jupiter.  

Server Client 1 Client 2

O1
O1

O2

O3{2}

O3{1,2}

O2{1}

Client 3

O1

O4{1}

O2{1,4}

O2{1}

O3{1,2}

O4{1,2,3}

O4{1,2,3}
O3{1,2,4}O4{1,2,3}

O1{2,3}

O4{1}

O2

O2
O3{2}

O2{1}
O3{1,2}

O1

O1

O4{1,2}

client1 client2 client3
O1 O1

O2{1} O1{2} O1
O2{1}

O2{1}
O3{1,2}

O1{2,3} O1
O2{1}

O3{1,2}

O2{1}
O3{1,2}

O4{1,2,3}

O1{2,3}
O4{1,2,3}

O1
O2{1,4}

O3{1,2,4}
O4{1,2,3}

O1

O1

O2{1}
O3{1,2}

 

Figure 3: NICE: the server maintains three 1D buffers; each 

client maintains one buffer.   

 

 

Local processing   

When Ox is generated by a client, it is executed immediate-

ly and saved in the local dimension of a 2D state-space. 

However, Ox is not propagated to the server until the prior 

local operation Ox-1 (if any) has been acknowledged by the 

server. Consequently, when Ox is propagated, it must have 

been symmetrically transformed with a sequence of remote 

operations (if any), denoted as L1, that are propagated from 

the server (see the follow-up description for remote pro-

cessing) and totally before Ox-1 (hence before Ox as well). 

This transformation can be expressed as: SLT(Ox, L1) = 

(Ox{L1}, L1{Ox}); the transformed operation Ox{L1} is 

propagated to the server.   

Server processing   

The server maintains a single 1D buffer for keeping track 

operations from all clients in a totally ordered and contex-

tualized fashion. The server handles Ox{L1} as follows:  

1. searches the 1D buffer to find the state that matches the 

context of Ox{L1}; 

2. transforms Ox{L1} against a sequence of operations, 

denoted as L2, from the matching state to the end of the 

buffer; this transformation can be expressed as 

LT(Ox{L1}, L2) = Ox{L1, L2};  

3. appends Ox{L1, L2} at the end of the buffer (other oper-

ations in the buffer remain unchanged); and  

4. propagates Ox{L1, L2} to all sites, including the origi-

nating site of Ox{L1} as an acknowledgement. 

Remote processing   

At each client site, there is a 2D state-space similar to Jupi-

ter. The handling of Ox{L1,L2} at a remote site is also simi-

lar to handling Ox{L1} in Jupiter: Ox{L1,L2} will be sym-

metrically transformed with a sequence of operations, de-

noted as L3, consisting of operations along the local dimen-

sion from the state that matches the context of Ox{L1,L2} to 

the final state of the state-space. This transformation can be 

expressed as SLT(Ox{L1,L2},L3)= (Ox{L1, L2,L3}, L3{Ox}). 

Finally, Ox{L1,L2,L3} is executed.  

CP2-avoidance validation 

It can be shown that L1 is an OSP1 with respect to Ox in 

SLT(Ox, L1), L2 is an OSP1 with respect to Ox{L1} in 

LT(Ox{L1}, L2), and L3 is an OSP2 with respect to Ox{L1, L2} 

in SLT(Ox{L1,L2}, L3) by following the same reasoning as for 

Jupiter. By Theorem 3, Google OT CP2-avoidance is con-

firmed.  

An example   

Consider operation O3{2} at Client 2 in Figure 4. Upon gen-

eration, it is executed immediately and appended at the end 

of the local dimension of a 2D state-space. It is not propagat-

ed to the server until it has been transformed with O1 and 

Client 2 has received the acknowledgement of O2{1}, which 

is the prior operation causally before O3{2}. The transformed 

operation O3{1,2} is propagated to the server. At the server, 

the matching state is located at the end of O2{1} in the buffer 

and there is no other operation shares this state, so O3{1,2} is 

appended to the end of the buffer and then propagated to all 
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clients. When O3{1,2} arrives at Client 3, it is handled in 

exactly the same way as in Jupiter. 

Consider another operation O4{1} at Client 3 in Figure 4. 

Upon generation, it is executed immediately and saved. It is 

immediately propagated to the server since it is the first local 

operation at Client 3. At the server, the matching state is at 

the end of O1 in the buffer, so O4{1} is transformed with 

O2{1} and O3{1,2} in sequence to produce O4{1,2,3}, which 

is appended at the end of the buffer and propagated to all 

clients. When O4{1,2,3} arrives at Client 1, it is executed 

without transformation and appended at the end of the state-

space along the global dimension. 
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Figure 4: Google OT: the server maintains a single linear buff-

er; each client maintains one 2D state-space; local operations 

are acknowledged by the server. 

SOCT3 

Different from all prior systems, SOCT3 uses a central se-

quencer, which issues continuous sequence numbers to total-

ly order operations, but is not involved in transforming or 

broadcasting operations. In addition, SOCT3 also uses state-

vectors (SV) to capture concurrency relations among opera-

tions.  

Local processing   

When Ox is generated at a site, it is executed immediately, 

and timestamped by a sequence number acquired from the 

sequencer and a state-vector. Local operations are propagated 

as-is in sequence and saved in a history buffer (HB). 

Remote processing   

SOCT3 handles Ox at a remote site as follows:  

1. waits until all operations with smaller sequence numbers 

have been executed at this site;  

2. copies HB into HB', and splits HB' into two totally or-

dered and contextualized sub-lists: HB'1 with operations 

that are causally before Ox, and HB'2 with operations that 

are concurrent with Ox, which can be achieved by using 

SV timestamps and a transpose procedure to reorder op-

erations;   

3. transforms Ox against operations in HB'2, which can be 

expressed as LT(Ox, HB'2) = Ox{HB'2}; 

4. executes Ox{HB'2}; and 

5. saves Ox{HB'2} at the end of HB and transposes it to the 

position determined by its total ordering in HB.  

It is worth highlighting that HB' is created only for transform-

ing Ox for execution, while HB always maintains operations 

that are totally ordered and contextualized.  

CP2-avoidance validation  

We can use the total ordering position of Ox to split HB'2 into 

two sublists: HB'2=HB'2-1+HB'2-2, where HB'2-1 contains oper-

ations totally before Ox and HB'2-2 contains operations totally 

after Ox. Then it can be shown that HB'2-1 is an OSP1 with 

respect to Ox; HB'2-2 is an OSP2 with respect to Ox {HB'2-1} = 

LT(Ox, HB'2-1) by following similar reasoning as for the Jupi-

ter case, except that the total ordering of operations is defined 

by sequence numbers and concurrent operations are detected 

by SVs.  

One special complication in SOCT3 is the use of a transpose 

procedure to reorder operations in HB. This transpose 

procedure involves a pair of reversible inclusion/forward and 

exclusion/backward transformation functions [23], which is 

non-trivial to achieve [18, 21].  
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Figure 5: SOCT3: there is a central sequencer for issuing con-

tinuous numbers to totally order operations. 

An example 

Consider operation O3{2} at Site 2 in Figure 5. Upon gen-

eration, it is executed immediately, timestamped by a se-

quence number "3" and a SV, appended at the end of the 

local HB, and propagated to Site 1 and Site 3. When O3{2} 

arrives at Site 3, it waits until operations with sequence 

numbers smaller than "3" have been executed. Then, the 

original HB = [O1, O2{1}, O4{1,2}] is copied into HB' and 

split into two sub-list: HB'1 = [O2], and HB'2=[O1{2}, 

O4{1,2}] by using SV timestamps and the transpose proce-

dure. O3{2} is transformed with concurrent operations in 

HB'2 to get O3{1,2,4}. The transformed operation O3{1,2,4} 

is executed, appended at the end of the original HB, and 

transposed to the position determined by the sequence 

number "3" to produce HB = [O1, O2{1}, O3{1,2}, 

O4{1,2,3}].  

SOCT4 

SOCT4 follows SOCT3 in using a central sequencer to to-

tally order operations, but eliminates the use of state-vectors 
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for capturing concurrency relations and the transpose pro-

cedure for reordering operations in HB by globally serializ-

ing operation propagation.  

Local processing 

When Ox is generated, SOCT4 handles it as follows: 

1. executes Ox immediately and acquires a sequence 

number from the central sequencer to timestamp Ox; 

2. saves Ox in HB, and waits until Ox has been symmetri-

cally transformed with a sequence of (remote) concur-

rent operations, denoted as L1, that are totally before 

Ox; this transformation can be expressed as: SLT(Ox, L1) 

= (Ox{L1}, L1{Ox});   

3. propagates  Ox{L1} (serialized operation propagation).   

Remote processing 

SOCT4 handles Ox{L1} at a remote site as follows:     

1. waits until all operations that are totally before Ox{L1} 

have been executed at this site;  

2. transforms Ox{L1} symmetrically with a sequence of 

local operations that are totally after it in HB, denoted 

as L2; this transformation can be expressed as: 

SLT(Ox{L1}, L2) = (Ox{L1, L2}, L2{Ox});  

3. executes Ox{L1,L2} (no need to save it in the buffer). 

CP2-avoidance validation  

It can be shown that L1 is an OSP1 with respect to Ox in 

SLT(Ox, L1), and L2 is an OSP2 with respect to Ox{L1} in 

SLT(Ox{L1}, L2) by the same reasoning as for Jupiter. By 

Theorem 3, SOCT4 CP2-avoidance is confirmed.  
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Figure 6: SOCT4: there is a central sequencer; each site main-

tains a buffer for locally generated operations only. 

 

An example  

Consider operation O2 at Site 2 in Figure 6. Upon its gener-

ation, it is executed immediately at Site 2, timestamped by 

a sequence number "2", and appended at the end of the lo-

cal buffer. It is not propagated until it has been symmetri-

cally transformed with O1, which is the only operation to-

tally before it. The transformed operation O2{1} is propa-

gated to Site 1 and Site 3. When O2{1} arrives at Site 3, it 

is symmetrically transformed with O4{1} that is totally after 

it to produce two transformed operations: one is O4{1,2}, 

which replaces O4{1} in the buffer; the other is O2{1,4}, 

which is executed at Site 3. 

TIBOT 

TIBOT (Time-Interval Based OT) is unique in using a dis-

tributed scheme to totally order operations, without using 

any central server. Collaborating sites may communicate 

with each other in any way that ensures reliability and the 

FIFO property.  

Each site maintains a local timer (a numeric counter) with 

continuously increasing Time-Interval (TI) values: 0, 1, 

2, ..., etc. Timers at different sites must take the same se-

quence of values, but may tick at different speeds and need 

not be synchronized.  

TI-based Timestamping Scheme: when an operation is 

generated at a site, it is timestamped by a tuple <TI, SI, SN>, 

where TI is the local timer value, SI is the local site identifi-

er, SN is the local operation sequence number.  

TI-based Total Ordering Scheme:  for any two operations 

Oa and Ob, with timestamps Ta and Tb, respectively, Oa⇒Ob  

if and only if: (1) Ta.TI<Tb.TI; or (2) Ta.TI=Tb.TI and Ta.SI < 

Tb.SI; or (3) Ta.TI=Tb.TI and Ta.SI=Tb.SI and Ta.SN<Tb.SN.  

Local processing   

When Ox is generated, TIBOT handles it as follows: 

1. executes Ox immediately and timestamps it with Tx; 

2. saves Ox in a history buffer (HB) and waits until: (1) 

the local timer has been advanced to a value larger than 

Tx.TI; and (2) Ox has been transformed with a sequence 

of remote operations, denoted as L1, which includes all 

operations whose TIs are smaller than Tx.TI; this can be 

expressed as LT(Ox, L1) = Ox{L1}; 

3. propagates Ox{L1} with the same timestamp Tx.  

Two important operation propagation schemes:  

1. All local operations generated during the same time 

interval are packaged and propagated to remote sites 

together, which not only reduces communication over-

head, but also simplifies derivation of total order rela-

tions at remote sites.  

2. If there is no operation generated at a site during a time 

interval, this site is required to broadcast a special mes-

sage, with a timestamp <TI, SI, nil>, at the end of each 

time interval. Such special messages are needed to en-

able the derivation of TI-based conditions and total or-

dering relations among operations, which are essential 

in TIBOT. 

Remote processing 

TIBOT handles Ox{L1} at a remote site as follows:  

1. waits until: (1) the local timer has advanced to a value 

greater than Tx.TI; (2) local operations with TIs equal 

to the Tx.TI have been propagated; and (3) all opera-

tions totally before Ox{L1} have been executed at this 

site;  

2. undoes a sequence of (local) operations in HB, denoted 

as Lundo, which are totally after Ox{L1};  

3. transforms Ox{L1} against a sequence of operations in 

HB, denoted as L2, whose TIs are the same as Tx.TI; 

this can be expressed as LT(Ox{L1}, L2) = Ox{L1, L2};  

4. executes Ox{L1, L2} and saves it in HB;  
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5. transforms operations in Lundo symmetrically with 

Ox{L1, L2}; this transformation can be expressed as  

SLT(Ox{L1, L2}, Lundo) = (Ox{L1,L2,Lundo}, Lundo{Ox});  

6. re-executes transformed operations in Lundo{Ox{L1, L2}} 

and saves them sequentially in HB. 

CP2-avoidance validation  

It can be shown that L1 is an OSP1 with respect to Ox in 

LT(Ox, L1) = Ox{L1}, L2 is an OSP1 with respect to Ox{L1} 

in LT(Ox{L1}, L2); and Lundo is an OSP2 with respect to 

Ox{L1, L2} in SLT(Ox{L1, L2}, Lundo) by following the same 

reasoning as for Jupiter, except that the total ordering and 

concurrency relations among operations are detected by TI-

based distributed timestamps. By Theorem 3, TIBOT CP2-

avoidance is confirmed.   

Undo(O3{2})
Undo(O2)
Do(O1)
Do(O2{1})
Do(O3{1,2})

Site 1 Site2 Site3
O1 O2

O3{2}

O4{1}
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M
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O4{1,2}<1,3,1>

O3{1,2}<1,2,2>

O4{1,2,3}
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0 0
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0
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1
O1
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O4{1,2,3}

0

1

TI=0

TI=1
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O1

M<1,1,nil>
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Figure 7: TIBOT: each site maintains an independent timer 

and a linear HB; operations may be undone and redone; spe-

cial message M is sent if no local operation to propagate. 

An example  

Consider operation O2 generated during TI = 0 at Site 2 in 

Figure 7. Upon generation, it is executed immediately, 

timestamped with <0, 2, 1>, and saved at the end of the HB. 

O2 is not propagated until its timer has advanced to TI = 1. 

TIBOT handles O2 at remote sites as follows: 

1. At Site 1: Step 1, the following conditions are met: (1) 

local timer has advanced to TI=1; (2) local operation 

O1, with the same TI=0 as O2, has been propagated; and 

(3) O1 is the only operation totally-before O2   and has 

been executed. Step 2, there is no local operation total-

ly-after O1, so nothing to undo. Step 3, O2 is trans-

formed with O1 to produce O2{1}. Step 4, O2{1} is ex-

ecuted and saved in HB. There is nothing to re-

transform and redo in Steps 5 and 6.  

2. At Site 3: Step 1, the following conditions are met: (1) 

local timer has advanced to TI=1; (2) there is no local 

operation during TI=0 and a special timestamp message 

M<0, 3, nil> has been propagated; and (3) O1 is the on-

ly operation totally-before O2 and has been executed. 

Step 2, local operation O4{1} is undone as it is totally 

after O2. Step 3, O2 is transformed with O1 to produce 

O2{1}. Step 4, O2{1} is executed and saved in HB. 

Step 5, O4{1} is transformed with O2{1} to produce 

O4{1,2}. Step 6, O4{1,2} is re-executed and saved in 

HB. O4{1,2} is propagated when TI is advanced to 2.  

COT 

Among seven OT systems, COT (Context-based OT) [21] 

is unique in supporting both consistency maintenance and 

group undo (initiated by users, not as internal concurrency 

control mechanisms) [11, 13, 21]. In this study, we focus on 

COT's consistency maintenance (convergence) aspects only. 

To avoid CP2, COT specifies a total ordering relation 

among operations and uses this relation to control operation 

execution and transformation orders, but leaves the schemes 

to achieve such ordering unspecified.  In other words, COT 

may adopt a server-based or a distributed scheme that is 

able to meet the specified total ordering requirements. In 

the following, we sketch COT under the assumption that 

every collaborating site is connected to a central server via 

a TCP communication channel; the server broadcasts and 

serializes operations, but does not transform operations. 

COT is also special in decoupling its operation buffering 

scheme from the core algorithm. The basic COT buffering 

scheme requires saving operations in original forms only. 

However, more sophisticated COT buffering schemes may 

selectively save operations in transformed forms to elimi-

nate re-transformations [21]. For simplicity, we assume the 

basic buffering scheme in COT description.  

Local processing 

When an operation Ox is generated at a site, it is executed 

immediately and timestamped by a Context-Vector (CV)   

for capturing causal/context relations among operations, 

and propagated as-is to remote sites (via the server). All 

local operations are saved in original forms in a local buffer, 

called Document State (DS), which may be implemented as 

a set or other suitable data structures. 

Server processing 

The server broadcasts Ox to all sites, including the site 

which Ox comes from, which serves as a notification of its 

total ordering based on the server serialization.  

Remote processing 

COT handles Ox at a remote site as follows: 

1. waits until all operations that are totally before Ox have 

been executed at this site; 

2. finds all operations in the local DS that are concurrent 

with Ox by using their context-vectors;   

3. contextualizes those operations into a sequence of op-

erations, denoted as L, which are totally ordered ac-

cording to the server serialization; 

4. transforms Ox against operations in L, which can be 

expressed as: LT(Ox, L)=Ox{L}; 

5. executes Ox{L}; 

6. saves the original Ox in the local DS.  
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CP2-avoidance validation  

We can use the total ordering position of Ox to split L into 

two sublists: L = L1 + L2, where L1 contains operations total-

ly before Ox and L2 contains operations totally after Ox. 

Then, it can be shown that L1 is an OSP1 with respect to Ox 

in LT(Ox, L1), and L2 is an OSP2 with respect to Ox {L1} in 

LT(Ox{L1}, L2) by following the same reasoning as for prior 

systems, except concurrency relations among operations are 

detected by context-vectors. By Theorem 3, COT CP2-

avoidance is confirmed, which is consistent with prior veri-

fication based on the general CP2-avoidance condition [21].  

An example  

Consider operation O3{2} at Client 2 in Figure 8. Upon 

generation, it is executed immediately, saved in the local 

DS, and propagated to the server. The server broadcasts 

O3{2} to all clients. When O3{2} arrives at Client 3, the 

local DS={O1, O4{1}, O2}. From DS, COT finds a subset of 

two operations {O1, O4{1}} which are concurrent with 

O3{2}, and converts the subset into a totally ordered and 

contextualized list L= [O1{2},O4{1,2}]. Then, O3{2} is 

transformed against L to get O3{1,2,4}. Finally, O3{1,2,4} 

is executed on the local document, and original operation 

O3{2} is saved in the local DS ={O1, O4{1}, O2, O3{2}}. 

O2O1 DS

Client 1 Client 2 Client 3
O1 O2

O3{2}

O4{1}
O2{1}
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O2{1}
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O2{1}
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O3{2}

O1{2}
O4{1,2}

O1
O4{1}

L

DS

L

L
O1
O2

O2
O3{2}
O1
O4{1}

O2
O3{2}
O1

O2
O3{2}

O1 DS

O1
O4{1}
O2
O3{2}

O1
O4{1}
O2

O1
O4{1}
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O1
O2
O3{2}

O1
O2
O3{2}
O4{1}

 

Figure 8: COT: every client maintains a document state DS 

containing executed operations in their original forms; con-

current operations are extracted from DS and contextualized 

in L in a totally ordered fashion for transformation. 

 
Summary of CP2-avoidance Validation  

CP2-avoidance validation results for seven OT systems are 

summarized in Table 1. As all transformations performed 

by these systems can be expressed by the basic CP2-

avoiding operation sequences and transformation patterns 

established in this work, we have confirmed CP2-avoidance 

correctness for all systems: 

1. COT was verified for its CP2-avoidance by using the 

general CP2-avoidance condition [21]; this work is a 

reconfirmation of its correctness based on the special 

CP2-avoidance condition.   

2. Jupiter and Google OT were designed to solely use 

CP1-preserving transformation functions for conver-

gence, which is essentially the same as what is meant 

by CP2-avoidance; this work establishes their correct-

ness in achieving convergence without requiring trans-

formation functions to preserve CP2.  

3. NICE, TIBOT, and SOCT3/4 were designed to avoid 

CP2 but verified by using the insufficient condition. It 

is not surprising that these systems were able to meet 

the insufficient condition because they can satisfy the 

special CP2-avoidance condition (in this work), which 

satisfies the general CP2-avoidance condition (accord-

ing to Theorem 2), which implies the insufficient CP2-

avoidance condition, as proven in [21].  The value of 

this work is to establish their CP2-avoidance correct-

ness on a sound ground.  

Conversely, these validation results have also confirmed the 

generality and effectiveness of the basic CP2-avoidance 

conditions, mechanisms and transformation patterns, and 

validation framework, for studying and verifying a variety 

of  OT systems.  

Table 1: CP2-avoidance validation summary 

NEW SYSTEMS/IDEAS INSPIRED BY THIS STUDY 

This study has not only enabled us to discover the basic 

conditions and transformation patterns for CP2-avoidance 

and to validate existing OT systems, but also inspired us to 

identify improvements to these OT systems, devise new OT 

systems capable of avoiding CP2 with unique combinations 

of novel features, and ideas for future exploration. 

Improvements to Jupiter and Google OT  

From NICE, we learned 1D buffers are adequate to achieve 

CP2-avoidance with simple control algorithms. By compar-

ing Jupiter with NICE, we observed their CP2-avoiding 

operation sequences and transformation patterns and loca-

tions are the same (as shown in Table 1), and their main 

differences lie in the use of 2D state-spaces (in Jupiter) vs. 

1D buffers (in NICE). From this observation, we derive 

OT 
Systems 

Operation Sequences and Transformation Patterns at 

Three Locations 

Local Server  Remote 

Jupiter 

OT  
Ox 

SLT(Ox,L1),                           

L1 is an OSP1 

with Ox    

SLT(Ox{L1},L2)                            

L2 is an OSP2with Ox{L1}   

NICE Ox 

SLT(Ox,L1),                         

L1 is an OSP1 

with Ox    

SLT(Ox{L1},L2),                                  

L2 is an OSP2 with Ox{L1}   

Google 

OT  

SLT(Ox, L1),            

L1 is an OSP1 

with Ox    

LT(Ox{L1},L2)                    

L2 is an OSP1                  

with Ox{L1}   

SLT(Ox{L1,L2}, L3),                         

L3 is an OSP2 with 

Ox{L1,L2}   

SOCT3 Ox Sequencer 

SLT(Ox, HB'2), 

HB'2=HB'21+HB'22,                 

HB'21 is an OSP1with Ox 

HB'22 is an OSP2 with 

Ox{HB'21}   

SOCT4 
SLT(Ox, L1),            

L1 is an OSP1 

with Ox    

Sequencer 
SLT(Ox{L1},L2),                           

L2 is an OSP2 with Ox{L1}   

TIBOT 
LT(Ox, L1),            

L1 is an OSP1 

with Ox    

N.A. 

LT(Ox{L1}, L2) ,                             

L2 is an OSP1 with Ox{L1};                            

SLT(Ox{L1, L2}, Lundo),          

Lundo is an OSP2 with 

Ox{L1,L2}         

COT Ox 
Serialization 

and broadcast 

LT(Ox, L), L=L1+L2,                 
L1 is an OSP1 with Ox,                
L2 is an OSP2 with Ox{L1}   
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Jupiter can be simplified by replacing all 2D state-spaces 

with 1D buffers similar to NICE, without losing any capa-

bility or complicating any aspect of Jupiter.  

Google OT has replaced the multiple 2D state-spaces in 

Jupiter server with a single 1D buffer, at the price of a stop-

and-wait synchronization between each client and the serv-

er, but still maintains 2D state-spaces at client sites. Based 

on the same NICE insight, Google OT can also be simpli-

fied by replacing 2D spaces with 1D buffers. 

A New OT System: TIBOT 2.0 

Compared to other six OT systems, TIBOT is unique not 

only in its distributed total ordering scheme, but also in its 

capability of avoiding both CP1 and CP2, which is only 

achieved by the prior GOT system [18]. But TIBOT avoids 

both CP1 and CP2 without using state-vectors or exclusive 

transformation, which is an advantage over GOT. Similar to 

GOT [18], TIBOT has used an undo/transform-

do/transform-redo scheme to enforce a totally ordered 

transformation among all operations and never transform a 

pair of operations in different orders. However, past re-

search has found undo/redo-based concurrency control 

schemes are inefficient and may cause interface abnormali-

ty to end-users, so most OT systems have been designed to 

avoid internal undo/redo.  

Inspired by the insights drawn from this study, we propose 

a new OT system, named as TIBOT 2.0, which inherits 

from TIBOT the basic time-interval-based distributed total 

ordering and shares the same local processing and propaga-

tion control schemes as TIBOT, but has a significantly re-

signed remote processing to eliminate undo/redo. We de-

scribe TIBOT 2.0 remote processing below.  

Remote processing in TIBOT 2.0 

TIBOT 2.0 handles Ox{L1} at a remote site as follows:  

1. waits until: the same conditions as specified in Step 1 

in the original TIBOT; 

2. transforms Ox{L1} against a sequence of operations in 

HB, denoted as L2, which includes all operations with 

TIs equal to Tx.TI and totally before Ox{L1}; this trans-

formation can be expressed as LT(Ox{L1}, L2) = Ox{L1, 

L2};  

3. saves Ox{L1, L2} at the end of L2 in HB;  

4. transforms Ox{L1, L2} symmetrically with a sequence 

of operations in HB, denoted as L3, which are totally 

after Ox{L1, L2}; this transformation can be expressed 

as SLT(Ox{L1, L2}, L3) = (Ox{L1, L2, L3}, L3{Ox});       

5. executes Ox{L1,L2,L3}; replaces L3 with L3{Ox} in HB. 

The key insight in TIBOT 2.0 is (in Step 4) to transform 

Ox{L1, L2} symmetrically with a sequence of operations in 

L3, which are totally after Ox{L1, L2}. This symmetric trans-

formation replaces undoing and redoing the same sequence 

of operations in Lundo (= L3) in Steps 2 and 5 of the original 

TIBOT. This is the key to avoiding CP2 without undo/redo 

(but giving up CP1-avoidance as CP1 can be easily 

achieved by transformation functions). 

In addition, TIBOT 2.0 made other subtle but important 

technical changes (due to the elimination of undo/redo):  

 Step 2: the condition for transformation of Ox{L1} has 

been enhanced to require operations in L2 to be totally 

before Ox{L1} as well as having TIs equal to Tx, which 

is in contrast to requiring TIs equal to Tx only in Step 3 

in the original TIBOT.  

 Step 5: Ox{L1, L2, L3} is executed to achieve the origi-

nal effect of Ox, which is in contrast to executing Ox{L1, 

L2} in Step 4 and re-executing undone operations in 

Step 6 in the original TIBOT.  

TIBOT 2.0 is unique in avoiding CP2 by distributed total 

ordering (no central server) without undo/redo. It can be 

shown that L2 is OSP1 with respect to Ox{L1} in LT(Ox{L1}, 

L2), and L3 is OSP2 with respect to Ox{L1, L2} in 

SLT(Ox{L1,L2}, L3) by following the same reasoning as in 

validating other systems.  

In Figure 9, we illustrate the working of TIBOT 2.0 under 

the same working example. Consider O2 at Site 2, local 

processing of O2 is the same as in the original TIBOT. 

TIBOT 2.0 handles O2 at Site 3, where HB = [O1, O4{1}], 

as follows. Step 1, the same conditions are met. In Step 2, 

O2 is transformed with L2 = [O1] , which is totally before 

O2, to produce O2{1}. Step 3, O2{1} is saved in HB after 

O1. Step 4, O2{1} is symmetrically transformed with 

L3=[O4{1}], which is totally after O2{1}, to produce 

O2{1,4} and O4{1,2}. Step 5, O2{1,4} is executed at Site 3, 

and O4{1,2} is saved to replace O4{1} in HB. By comparing 

Figure 9 with Figure 7, we can see the undo/redo processes 

for O1, O2{1} and O3{1,2} have been eliminated, and their 

execution forms have also been changed due to changes in 

Step 5 of TIBOT 2.0.  

Site 1 Site2 Site3
O1 O2

O3{2}

O4{1}
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Figure 9: TIBOT 2.0: achieving CP2-avoidance without un-

do/transform-do/transform-redo or a central server. 

Seeking Alternative CP2-avoidance Conditions    

From this study, we have found all existing systems capable 

of avoiding CP2 meet the same special CP2-avoidance con-

dition as specified in Definition 6. However, this is only 

one possible specialization of the general condition, which 

requires operations in the context of two operations to be 

the same whenever they are transformed with each other. 
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One interesting question arises: are there other possible 

specializations of this general CP2-avoidance condition? 

The answer is yes.  

One alternative specialization is to restrict operations in the 

context of Oa and Ob to be totally before both Oa and Ob 

only, i.e. Ox ⇒Oa ⇒Ob, (keeping Condition 2-1 in Definition 

6), but disallow operations that are totally ordered between 

Oa and Ob (removing Condition 2-2 in Definition 6). This 

specialization is valid as it still ensures the context unique-

ness of two operations whenever they are transformed and 

meets other established context-based conditions [21]. 

However, careful examination reveals this specialization 

would prohibit users from generating operations continu-

ously, which is undesirable. 

Seeking for other valid and desirable special CP2-avoidance 

conditions (e.g. to get rid of totally ordering operations) is 

an interesting direction for further research as it may inspire 

invention of novel OT systems for meeting special algo-

rithmic or application needs in the future.  

CONCLUSION 

In this work, we have conducted a comprehensive and in-

depth study on convergence property preservation and 

avoidance in OT systems in general, and in validating CP2-

avoidance for seven major OT systems: Jupiter, NICE, 

Google OT, SOCT3, SOCT4, TIBOT, and COT. From this 

study, we have made three major contributions: (1) estab-

lishment of CP2-avoidance correctness of seven major OT 

systems; (2) discovery of CP2-avoidance conditions, opera-

tion sequence and transformation patterns, basic mecha-

nisms and a general framework for studying a diverse range 

of OT systems; and (3) improvements to existing systems 

(Jupiter and Google OT for Wave and Docs), and design of 

a new system TIBOT 2.0 – the first OT system based on a 

distributed total ordering scheme and capable of avoiding 

CP2 without using undo/redo. These results have signifi-

cantly contributed to the advancement of OT knowledge 

and technique,  and collaboration-enabling technology in 

general.  

Inspired by the insights from this study, we are designing 

new OT systems to support both consistency maintenance 

and group undo, without using vector-based schemes, in 

large scale collaborations with an arbitrary number of dy-

namic collaborating users. Other major efforts in our group 

are devoted to applying OT technologies to advanced real-

world collaborative applications.   
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